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Part II

Causal inference with models





Chapter 11
WHY MODEL?

Do not worry. No more chapter introductions around the effect of your looking up on other people’s looking up.

We squeezed that example well beyond what seemed possible. In Part II of this book, most examples involve real

data. The data sets can be downloaded from the book’s web site.

Part I was mostly conceptual. Calculations were kept to a minimum, and could be carried out by hand. In

contrast, the material described in Part II requires the use of computers to fit regression models, such as linear

and logistic models. Because this book cannot provide a detailed introduction to regression techniques, we assume

that readers have a basic understanding and working knowledge of these commonly used models. Our web site

provides SAS programs to replicate all analyses described in the text (check the code margin notes). Our web
site also provides links to other sites from which some STATA and R programs can be obtained.

This chapter describes the differences between the nonparametric estimators used in Part I and the parametric

(model-based) estimators used in Part II. It also reviews the concept of smoothing and, briefly, the bias-variance

trade-off involved in any modeling decision. The chapter motivates the need for models in data analysis, regardless

of whether the analytic goal is causal inference or, say, prediction. We will take a break from causal considerations

until the next chapter.

11.1 Data cannot speak for themselves

Consider a study population of 16 individuals infected with the human im-

munodeficiency virus (HIV). Unlike in Part I of this book we will not view

these individuals as representatives of 1 billion individuals identical to them.

Rather, these are just 16 individuals randomly sampled from a large, possibly

hypothetical super-population: the target population.

At the start of the study each individual receives a certain level of a treat-

ment  (antiretroviral therapy), which is maintained during the study. At the

end of the study, a continuous outcome  (CD4 cell count, in cells/mm3) is

measured in all individuals. We wish to consistently estimate the mean of 

among subjects with treatment level  =  in the population from which the

16 subjects were randomly sampled. That is, the estimand is the unknown

population parameter E[ | = ].

An estimator bE[ | = ] of E[ | = ] is some function of the data that is

used to estimate the unknown population parameter. Informally, a consistent

estimator bE[ | = ] meets the requirement that “the larger the sample size,See Chapter 10 for a rigorous defi-

nition of a consistent estimator. the closer the estimate to the population value E[ | = ].” Two examples of

possible estimators bE[ | = ] are (i) the sample average of  among those

receiving  = , and (ii) the value of the first observation in the dataset that

happens to have the value  = . The sample average of  among those

receiving  =  is a consistent estimator of the population mean; the value of

the first observation with  =  is not. In practice we require all estimators

to be consistent, and therefore we use the sample average to estimate the

population mean.

Suppose treatment  is a dichotomous variable with two possible values: no

treatment ( = 0) and treatment ( = 1). Half of the individuals were treated
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( = 1). Figure 11.1 is a scatter plot that displays each of the 16 individuals

as a dot. The height of the dot indicates the value of the individual’s outcome

Figure 11.1

 . The 8 treated individuals are placed along the column  = 1, and the

8 untreated along the column  = 0. An estimate of the mean of  among

subjects with level  =  in the population is the numerical result of applying

the estimator (i.e., the sample average) to a particular data set.

Our estimate of the population mean in the treated is the sample average

14625 for those with  = 1, and our estimate of the population mean in the

untreated is the sample average 6750 in those with  = 0. Under exchange-

ability of the treated and the untreated, the difference 14625 − 6750 would
be interpreted as an estimate of the average causal effect of treatment  on

the outcome  in the target population. However, this chapter is not about

making causal inferences. Our goal is simply to motivate the need for models

when trying to estimate population quantities like E[ | = ], irrespective of

whether they do or do not have a causal interpretation.

Now suppose treatment  is a polytomous variable that can take 4 possible

values: no treatment ( = 1), low-dose treatment ( = 2), medium-dose treat-

ment ( = 3), and high-dose treatment ( = 4). A quarter of the individuals

received each treatment level. Figure 11.2 displays the outcome value for the

16 individuals in the study population. To estimate the population means in

the 4 groups defined by treatment level, we compute the corresponding sample

averages. The estimates are 700, 800, 1175, and 1950 for  = 1,  = 2,code: Program 11.1
 = 3, and  = 4, respectively.

Figure 11.2

Figures 11.1 and 11.2 depict examples of discrete (categorical) treatment

variables with 2 and 4 categories, respectively. Because the number of study

subjects is fixed at 16, the number of subjects per category decreases as the

number of categories increase. The sample average in each category is still

a consistent estimator of the corresponding population mean, but the proba-

bility that the sample average is close to the corresponding population mean

decreases as the number of subjects in each category decreases. The length of

the 95% confidence intervals (see Chapter 10) for the category-specific means

will be greater for Figure 11.2 than for Figure 11.1.

Finally suppose that treatment  is variable representing the dose of treat-

ment in mg/day, and that it takes integer values from 0 to 100 mg. Figure

Figure 11.3

11.3 displays the outcome value for each of the 16 individuals. Because the

number of possible values of treatment is much greater than the number of in-

dividuals in the study, there are many values of  that no individual received.

For example, there are no individuals with treatment dose  = 90 in the study

population.

This creates a problem: how can we estimate the mean of  among subjects

with treatment level  = 90 in the target population? The estimator we used

for the data in Figures 11.1 and 11.2–the treatment-specific sample average–

is undefined for treatment levels in Figure 11.3 for which there are no subjects.

If treatment  were a truly continuous variable, then the sample average would

be undefined for nearly all treatment levels. (A continuous variable  can be

viewed as a categorical variable with an infinite number of categories.)

The above description shows that in some settings we cannot let the data

“speak for themselves” to obtain a consistent estimate. Rather, we need to

supplement the data with a model as described in the next section.
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11.2 Parametric estimators

We want to consistently estimate the mean of  among subjects with treatment

level  = 90, i.e., E[ | = 90], from the data in Figure 11.3. Suppose we

expect the mean of  among subjects with treatment level  = 90 to lie

between the mean among subjects with  = 80 and the mean among subjects

with  = 100. In fact, suppose we knew that the treatment-specific population

mean of  is proportional to the value of treatment  throughout the range

of . More precisely, we know that the mean of  , E[ |], increases (or
decreases) from some value 0 for  = 0 by 1 units per unit of . Or, more

compactly,

E[ |] = 0 + 1

This equation is a restriction on the shape of the relation between treatment

level and the mean of the outcome, i.e., the dose-response curve. This particu-More generally, the restriction on

the shape of the relation is known

as the functional form.

lar restriction is referred to as a linear mean model, and the quantities 0 and

1 are referred to as the parameters of the model. Models that describe the

dose-response curve in terms of a finite number of parameters are referred to as

parametric models. In our example, the parameters 0 and 1 define a straight

line that crosses (intercepts) the vertical axis at 0 and that has a slope 1.

That is, the model specifies that all possible dose-response curves are straight

lines, though their intercepts and slopes may vary.

We are now ready to combine the data in Figure 11.3 with our parametric

model to estimate E[ | = ] for all values  from 0 to 100. The first step is to

obtain consistent estimates ̂0 and ̂1 of the parameters 0 and 1. The second

step is to use these estimates to estimate the mean of  for any value  = .

Figure 11.4

For example, to estimate the mean of  among subjects with treatment level

 = 90, we use the expression bE[ | = 90] = ̂0 + 90̂1. The estimate bE[ |]
for each individual is referred to as the predicted value.

The parameters 0 and 1 can be consistently estimated by the method of

ordinary least squares estimation. A nontechnical motivation of the method

follows. Consider all possible candidate straight lines for Figure 11.3, each of

them with a different combination of values of intercept 0 and slope 1. For

each candidate line, one can calculate the vertical distance from each dot to

the line (the residual), square each of those 16 residuals, and then sum the

16 squared residuals. The line for which the sum is the smallest is the “least

squares” line, and the parameter values ̂0 and ̂1 of this “least squares” line

are the “least squares” estimates. The values ̂0 and ̂1 can be easily computed

using linear algebra, as described in any statistics textbook.

In our example, the parameter estimates are ̂0 = 2455 and ̂1 = 214,code: Program 11.2
Under the assumption that the vari-

ance of the residuals does not de-

pend on  (homoscedasticity), the

Wald 95% confidence intervals are

(−212 703) for 0, (128 299)

for 1, and (1721 2616) for

E[ | = 90].

which define the straight line shown in Figure 11.4. The predicted mean of

 among subjects with treatment level  = 90 is therefore bE[ | = 90] =

2455 + 90 × 214 = 2169. Because ordinary least squares estimation uses all
data points to find the best line, the mean of  in the group  = , i.e.,

E[ | = ], is estimated by borrowing information from subjects who have

values of treatment  not equal to .

So what is a model? A model is an a priori restriction on the distribution

of the data. Our linear model says that the dose-response curve is a straight

line, which restricts its shape. For example, the model says that the mean of

 for  = 90 restricts its value to be between the mean of  for  = 80 and

the mean of  for  = 100. This restriction is encoded by parameters like 0
and 1. A parametric model is like adding information that is not in the data
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to compensate for the lack of sufficient information in the data themselves.

Parametric estimators–those based on parametric models–allow us to

consistently estimate quantities that cannot be consistently estimated other-

wise, e.g., the mean of  among subjects with treatment level  = 90. But

this is not a free lunch. When using a parametric model, the inferences are cor-

rect only if the restrictions encoded in the model are correct, i.e. if the model

is correctly specified. Thus model-based causal inference–to which the re-

mainder of this book is devoted–relies on the condition of (approximately) no

model misspecification. Because parametric models are rarely, if ever, perfectly

specified, certain degree of model misspecification is almost always expected.

11.3 Nonparametric estimators

Let us return to the data in Figure 11.1. Treatment  is dichotomous and we

want to consistently estimate the mean of  in the treated E[ | = 1] and in
the untreated E[ | = 0]. Suppose we have become so enamored with models
that we decide to use one to estimate these two quantities. Again we proposed

a linear model

E[ |] = 0 + 1

where E[ | = 0] = 0+0×1 = 0 and E[ | = 1] = 0+1×1 = 0+1. We

use the least squares method to obtain consistent estimates of the parameters 0
and 1. These estimates are ̂0 = 675 and ̂1 = 7875. We therefore estimatecode: Program 11.2 bE[ | = 0] = 675 and bE[ | = 1] = 14625. Note that our model-based

estimates of the mean of  are identical to the sample averages we calculated

in Section 11.1. This is not a coincidence but an expected finding.In this book we define “model” as

an a priori mathematical restric-

tion on the possible states of nature

(Robins, Greenland 1986). Part I

was entitled “Causal inference with-

out models” because it only de-

scribed saturated models.

Let us take a second look at the model E[ | = ] = 0 + 1 with a

dichotomous treatment . If we rewrite the model as E[ | = 1] = E[ | =
0] + 1, we see that the model simply states that the mean in the treated

E[ | = 1] is equal to the mean in the untreated E[ | = 0] plus a quantity
1, where 1 may be negative, positive or zero. But this statement is of course

always true! The model imposes no restrictions whatsoever on the values of

E[ | = 1] and E[ | = 0]. Therefore E[ | = ] = 0 + 1 with a

dichotomous treatment  is not a model because it lets the data speak for

themselves, just like the sample average does. “Models” which do not impose

restrictions are saturated models. Because they formally look like models even if

they do not fit our definition of model, saturated models are ordinarily referred

to as models too.

Whenever the number of parameters in the model is equal to the number

of population quantities that can be estimated by using the model, then the

model is saturated. For example, the linear model E[ |] = 0 + 1 has

two parameters and, when  is dichotomous, estimates two quantities: the

means E[ | = 1] and E[ | = 0]. Since the values of the two parameters

are not restricted by the model, neither are the values of the means. As aA saturated model has the same

number of unknowns in both sides

of the equal sign.

contrast, consider the data in Figure 11.3 where  can take values from 0 to

100. The linear model E[ |] = 0+1 has two parameters but estimates 101

quantities, i.e., E[ | = 0]E[ | = 1] E[ | = 100]. The only hope for

consistently estimating 101 quantities with two parameters is to be fortunate

to have all 101 means E[ | = ] lie along a straight line. When a model has

only a few parameters but it is used to estimate many population quantities,

we say that the model is parsimonious.
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Nonparametric estimators are those that produce estimates from the data

without any a priori restrictions on the functional form of the estimate. An

example of nonparametric estimator of the population mean E[ | = ] for

a dichotomous treatment is its empirical version, the sample average. Or,

equivalently, the saturated model described in this Section. All methods for

causal inference that we described in Part I of this book–standardization, IP

weighting, stratification, matching–were based on nonparametric estimators

because they did not impose any a priori restrictions on the value of the effect

estimates. In contrast, all methods for causal inference described in Part II of

this book rely on estimators that are (at least partly) parametric. Parametric

estimation and other approaches to borrow information are our only hope

when, as is often the case, data are unable to speak for themselves.

11.4 Smoothing

Consider again the data in Figure 11.3 and the linear model E[ |] = 0+1.

The parameter 1 is the difference in mean outcome per unit of treatment dose

. Because 1 is a single number, the model specifies that the difference in

mean outcome  per unit of treatment  must be constant throughout the

entire range of , that is, the model requires the conditional mean outcome to

follow a straight line as a function of treatment dose . Figure 11.4 shows the

best-fitting straight line.

But one can imagine situations in which the difference in mean outcome is

larger for a one-unit change at low doses of treatment, and smaller for a one-

unit change at high doses. This would be the case if, once the treatment dose

reaches certain level, higher doses have an increasingly small effect. Under

this scenario, the model E[ |] = 0 + 1 is incorrect. However, linear

models can be made more flexible. For example, suppose we fit the modelCaution: Often the term “linear” is

used with two different meanings.

A model is linear when it is ex-

pressed as a linear combination of

parameters and variables. A term

in the model is linear when it de-

fines the slope of a straight line.

E[ |] = 0 + 1 + 2
2, where 2 =  ×  is -squared, to the data in

Figure 11.3. This is still referred to as a linear model because the conditional

mean is expressed as a linear combination, i.e., as the sum of the products of

each covariate ( and 2) with its associated coefficient (the parameters 1 and

2) plus an intercept (0). However, whenever 2 is not zero, the parameters

0, 1, and 2 now define a curve–a parabola–rather than a straight line. We

refer to 1 as the parameter for the linear term , and to 2 as the parameter

for the quadratic term 2.

The curve under the 3-parameter linear model E[ |] = 0 + 1+ 2
2

can be found via ordinary least squares estimation applied to the data in

Figure 11.3. The estimated curve is shown in Figure 11.5. The parameter

estimates are ̂0 = −741, ̂1 = 411, and ̂2 = −002. The predicted mean ofcode: Program 11.3
Under the homoscedasticity as-

sumption, the Wald 95% confi-

dence interval for bE[ | = 90] is

(1222 6023).

 among subjects with treatment level  = 90 is obtained from the expressionbE[ | = 90] = ̂0 + 90̂1 + 90× 90̂2 = 1971.
We could keep adding parameters for a cubic term (3

3), a quartic term

(4
4)... until we reach a 15th-degree term (15

15). At that point the number

of parameters in our model equals the number of data points (individuals). The

shape of the curve would change as the number of parameters increases. In

general, the more parameters in the model, the more inflection points will

appear. That is, the curve generally becomes more “wiggly,” or less smooth,

as the number of parameters increase. A model with 2 parameters–a straight

line–is the smoothest model (a line with no inflection points). A model with

as many parameters as data points is the least smooth model (as many possible
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Fine Point 11.1

Model dimensionality and the relation between frequentist and Bayesian intervals. Chapter 10 described the

confidence intervals used in frequentist statistical inference. Bayesian statistical inference uses credible intervals, which

have a more natural interpretation: A Bayesian 95% credible interval means that, given the observed data, “there is a

95% probability that the estimand is in the interval”. In Bayesian inference, probability is defined as degree-of-belief–a

concept very different from probability as frequency. In part because of the requirement to specify the investigators’

degree of belief, Bayesian inference is less commonly used than frequentist inference.

Interestingly, in simple, low-dimensional parametric models with large sample sizes, 95% Bayesian credible intervals

are also 95% frequentist confidence intervals, but in high-dimensional or nonparametric models, a Bayesian 95% credible

interval may not be a 95% confidence interval as it may trap the estimand much less than 95% of the time. The

underlying reason for these results is that Bayesian inference requires the specification of a prior distribution for all

unknown parameters. In low-dimensional parametric models the information in the data swamps that contained in

reasonable priors. As a result, inference is insensitive to the particular prior distribution selected. However in high-

dimensional models, this is no longer the case. Therefore if the true parameter values that generated the data are

unlikely under the chosen prior distribution, the center of Bayes credible interval will be pulled away from the true

parameters and towards the parameter values given the greatest probability under the prior.

inflection points as data points).

Figure 11.5

Modeling can be viewed as a procedure to transform noisy data into more

or less smooth curves. This smoothing occurs because the model borrows

information from many data points to predict the outcome value at a particular

combination of values of the covariates. The smoothing results from E[ | =
] being estimated by borrowing information from subjects with  not equal

to . All parametric estimators incorporate some degree of smoothing.

The degree of smoothing depends on how much information is borrowed

across individuals. The 2-parameter model E[ |] = 0 + 1 estimates

E[ | = 90] by borrowing information from all individuals in the study pop-

ulation to find the least squares straight line. A model with as many parame-

ters as individuals does not borrow any information to estimate E[ |] at the
values of  that occur in the data, though it borrows information (by inter-

polation) for values of  that do not occur in the data. Intermediate degrees

of smoothing can be achieved by using an intermediate number of parameters

or, more generally, by restricting the number of individuals that contribute toWe used a model for continuous

outcomes as an example. The same

reasoning applies to models for di-

chotomous outcomes such as logis-

tic models (see Fine Point 11.1)

the estimation. For example, to estimate E[ | = 90] we could decide to fit a
2-parameter model E[ |] = 0+1 restricted to individuals with treatment

doses between 80 and 100. That is, we would only borrow information from

individuals in a 10-unit window of  = 90. The wider the window around

 = 90, the more smoothing would be achieved.

In our simplistic examples above, all models included either one covariate

 or two covariates  and 2 so that the curves can be represented on a two-

dimensional book page. In realistic applications, models often include many

different covariates so that the curves are really hyperdimensional surfaces.

Regardless of the dimensionality of the problem, the concept of smoothing

remains invariant: the fewer parameters in the model, the smoother the pre-

diction (response) surface will be.
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11.5 The bias-variance trade-off

In previous sections we have used the 16 individuals in Figure 11.3 to estimate

the mean outcome  among people receiving a treatment dose of  = 90 in the

target population, E[ | = 90]. Since nobody in the study population received
 = 90, we could not let the data speak for themselves. So we combined the

data with a linear model. The estimate bE[ | = 90] varied with the model.

Under the 2-parameter model E[ |] = 0+1, the estimate was 2169 (95%

CI: 1721 2616). Under the 3-parameter model E[ |] = 0+1+2
2, the

estimate was 1971 (95% CI: 1428, 2515). We used two different parametric

models that yielded two different estimates. Which one is better? Is 2169 or

1971 closer to the mean in the target population?

If the relation is truly curvilinear, then the estimate from the 2-parameter

model will be biased because this model assumes a straight line. On the other

hand, if the relation is truly a straight line, then the estimates from both models

will be valid. This is so because the 3-parameter model E[ |] = 0 + 1+

2
2 is correctly specified whether the relation follows a straight line (in which

case 2 = 0) or a parabolic curve (in which case 2 6= 0). One safe strategy

would be to use the 3-parameter model E[ |] = 0+ 1+ 2
2 rather than

the 2-parameter model E[ |] = 0 + 1. Because the 3-parameter model is

correctly specified under both a straight line and a parabolic curve, it is less

likely to be biased. In general, the larger the number of parameters in the

model, the fewer restrictions the model imposes; the less smooth the model,

the more protection afforded against bias from model misspecification.

Although less smooth models may yield a less biased estimate, they also

result in a larger variance, i.e., wider 95% confidence intervals around the

estimate. For example, the estimated 95% confidence interval around bE[ | =
90] was much wider when we used the 3-parameter model than when we used

the 2-parameter model. However, when the estimate bE[ | = 90] based on the
2-parameter model is biased, the standard (nominal) 95% confidence interval

will not cover the true parameter E[ | = 90] 95% of the time.

This bias-variance trade-off is at the heart of all data analyses. Investiga-

tors using models need to decide whether some protection against bias–by,

say, adding more parameters to the model–is worth the cost in terms of vari-

ance. Though some formal procedures exist to aid these decisions, in practice

many investigators decide which model to use based on criteria like tradition,

interpretability of the parameters, and software availability. In this book we

will usually assume that our parametric models are correctly specified. This

is an unrealistic assumption, but it allows us to focus on the problems that

are specific to causal analyses. Model misspecification is, after all, a problem

that can arise in any sort of data analysis, regardless of whether the estimates

are endowed with a causal interpretation. In practice, careful investigators will

always question the validity of their models, and will conduct analysis to assess

the sensitivity of their estimates to model specification.

We are now ready to describe the use of models for causal inference.
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Technical Point 11.1

A taxonomy of commonly used models. The main text describes linear regression models of the form E[ |] =
 ≡

P
=0

 where  is a vector of covariates 01  with 0 = 1 for all  individuals. Linear regression

models are a subset of larger class of models: Generalized Linear Models or GLMs (McCullagh and Nelder 1989). GLMs

have three components: a linear functional form
P
=0

, a link function  {·} such that  {E[ |]} =
P
=1

, and

a distribution for the  conditional on . If we do not model the distribution of  conditional on , we refer to the

model as a conditional mean model. Conditional mean models only specify a parametric form for E[ |] but do not
otherwise restrict the distribution of  |. These are the models we most commonly use in Part II.

The linear regression models described in the main text is a conditional mean model that uses the identity link

function. Conditional mean model for outcomes with strictly positive values (e.g., counts, the numerator of incidence

rates) often use the log link function to ensure that all predicted values will be greater than zero, i.e., log {E[ |]} =
P
=0

 so E[ |] = exp
µ

P
=0



¶
. Conditional mean models for dichotomous outcomes (i.e., those that only take

values 0 and 1) often use a logit link i.e., log
n

E[ |X]
1−E[ |X]

o
=

P
=0

, so that E[ |] = expit
µ

P
=0



¶
. This link

ensures that all predicted values will be greater than 0 and less than 1. Conditional mean models that use the logit

function are referred to as logistic regression models, and they are widely used in this book. For these links (referred

to as canonical links) we can estimate  by maximum likelihood under a normal model for the identity link, a Poisson

model for the log link, and a logistic regression model for the logit link. These estimates are consistent for  as long as

the conditional mean model for E[ |] is correct. Generalized estimating equation (GEE) models, often used to deal
with repeated measures, are a further example of a conditional mean models (Liang and Zeger, 1986).

Conditional mean models themselves can be generalized by relaxing the assumption that E[ |] takes a parametric
form. For example, a kernel regression model does not impose a specific functional form on E[ |] but rather estimates
E[ | = ] for any  by

P
=1

 (−)
P
=1

 (−) where  () is a positive function, known as a kernel

function, that attains its maximum value at  = 0 and decreases to 0 as || gets large at a rate that depends on the
parameter  subscripting . As another example, generalized additive models (GAMs) replace the linear combination
P
=0

 of a conditional mean model by a sum of smooth functions
P
=0

(). The model can be estimated using a

backfitting algorithm with (·) estimated at iteration  by, for example, kernel regression.(Hastie and Tibshirani 1990).
In the text we discuss smoothing with parametric models, which specify an a priori functional form for E[ | = ],

such as a parabola. In estimating E [ | = ], they may borrow information from values of  that are far from

. In contrast, kernel regression models do not specify an a priori functional form and borrow information only from

values of  near to  when estimating E [ | = ]. A kernel regression model is an example of a “non-parametric”

regression model. This use of the term “nonparametric” differs from our previous usage. Our nonparametric estimators

of E [ | = ] only used those subjects for whom  equalled  exactly; no information was borrowed even from close

neighbors. Here “nonparametric” estimators of E [ | = ] use subjects with values of  near to . How near is

controlled by a smoothing parameter referred to as the bandwidth . Our nonparametric estimators correspond to

taking  = 0.



Chapter 12
IP WEIGHTING AND MARGINAL STRUCTURAL MODELS

Part II is organized around the causal question “what is the average causal effect of smoking cessation on body

weight gain?” In this chapter we describe how to use IP weighting to estimate this effect from observational data.

Though IP weighting was introduced in Chapter 2, we only described it as a nonparametric method. We now

describe the use of models together with IP weighting which, under additional assumptions, will allow us to tackle

high-dimensional problems with many covariates and nondichotomous treatments.

To estimate the effect of smoking cessation on weight gain we will use real data from the NHEFS, an acronym

that stands for (ready for a long name?) National Health and Nutrition Examination Survey Data I Epidemi-

ologic Follow-up Study. The NHEFS was jointly initiated by the National Center for Health Statistics and the

National Institute on Aging in collaboration with other agencies of the United States Public Health Service. A

detailed description of the NHEFS, together with publicly available data sets and documentation, can be found at

www.cdc.gov/nchs/nhanes/nhefs/nhefs.htm. For this and future chapters, we will use a subset of the NHEFS

data that is available from this book’s web site. We encourage readers to improve upon and refine our analyses.

12.1 The causal question

Our goal is to estimate the average causal effect of smoking cessation (the

treatment)  on weight gain (the outcome)  . To do so, we will use data

from 1566 cigarette smokers aged 25-74 years who, as part of the NHEFS, hadWe restricted the analysis to

NHEFS individuals with known sex,

age, race, weight, height, educa-

tion, alcohol use and intensity of

smoking at the baseline (1971-75)

and follow-up (1982) visits, and

who answered the general medical

history questionnaire at baseline.

a baseline visit and a follow-up visit about 10 years later. Individuals were

classified as treated  = 1 if they reported having quit smoking before the

follow-up visit, and as untreated  = 0 otherwise. Each individual’s weight

gain  was measured (in kg) as the body weight at the follow-up visit minus

the body weight at the baseline visit. Most people gained weight, but quitters

gained more weight on average. The average weight gain was bE[ | = 1] = 45
kg in the quitters, and bE[ | = 0] = 20 kg in the non-quitters. The difference
E[ | = 1] − E[ | = 0] was therefore estimated to be 25, with a 95% CI

from 17 to 34. A conventional statistical test of the null hypothesis that thisTable 12.1
Mean baseline 

characteristics 1 0

Age, years 46.2 42.8

Men, % 54.6 46.6

White, % 91.1 85.4

University educa-

tion, %

15.4 9.9

Weight, kg 72.4 70.3

Cigarettes/day 18.6 21.2

Years smoking 26.0 24.1

Little or no exer-

cise, %

40.7 37.9

Inactive daily life,

%

11.2 8.9

difference was equal to zero yielded a P-value 0001.

We define E[ =1] as the mean weight gain that would have been observed

if all individuals in the population had quit smoking before the follow-up visit,

and E[ =0] as the mean weight gain that would have been observed if all

individuals in the population had not quit smoking. We define the average

causal effect on the difference scale as E[ =1]−E[ =0], that is, the difference

in mean weight that would have been observed if everybody had been treated

compared with untreated. This is the causal effect that we will be primarily

concerned with in this and the next chapters.

The associational difference E[ | = 1]−E[ | = 0], which we estimated
in the first paragraph of this section, is generally different from the causal

difference E[ =1] − E[ =0]. The former will not generally have a causal

interpretation if quitters and non-quitters differ with respect to characteristics

that affect weight gain. For example, quitters were on average 3 years older

than non-quitters (quitters were 44% more likely to be above age 50 than non
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Fine Point 12.1

Setting a bad example. Our smoking cessation example is convenient: it does not require deep subject-matter

knowledge and the data are publicly available. One price we have to pay for this convenience is potential selection bias.

We classified individuals as treated  = 1 if they reported (i) being smokers at baseline in 1971-75, and (ii) having

quit smoking in the 1982 survey. Condition (ii) implies that the individuals included in our study did not die and were

not otherwise lost to follow-up between baseline and 1982 (otherwise they would not have been able to respond to the

survey). That is, we selected individuals into our study conditional on an event–responding the 1982 survey–that

occurred after the start of the treatment–smoking cessation. If treatment affects the probability of selection into the

study, we might have selection bias as described in Chapter 8.

A randomized experiment of smoking cessation would not have this problem. Each individual would be assigned to

either smoking cessation or no smoking cessation at baseline, so that their treatment group would be known even if the

individual did not make it to the 1982 visit. In Section 12.6 we describe how to deal with potential selection bias due

to censoring or missing data for the outcome–something that may occur in both observational studies and randomized

experiments–but the situation described in this Fine Point is different: here the missing data concerns the treatment

itself. This form of selection bias can be handled through sensitivity analysis, as was done in Appendix 3 of Hernán et

al (2008).

The choice of this example allows us to describe, in our own analysis, a ubiquitous problem in published analyses

of observational data: treatments that start before the follow-up. Though we decided to ignore this issue in order to

keep our analysis simple, didactic convenience would not be a good excuse to avoid dealing with this bias in real life.

quitters), and older people gained less weight than younger people, regardless

of whether they did or did not quit smoking. We say that age is a (surrogate)

confounder of the effect of  on  and our analysis needs to adjust for age. The

unadjusted estimate 25 might underestimate the true causal effect E[ =1]−
E[ =0].

As shown in Table 12.1, quitters and non-quitters also differed in their dis-code: Program 12.1 computes the
descriptive statistics shown in this

section

tribution of other variables such as sex, race, education, baseline weight, and

intensity of smoking. If these variables are confounders, then they also need

to be adjusted for in the analysis. In Chapter REF we discuss criteria for con-

founder selection. Here we assume that the following 9 variables, all measured

at baseline, are sufficient to adjust for confounding: sex (0: male, 1: female),

age (in years), race (0: white, 1: other), education (5 categories), intensity

and duration of smoking (number of cigarettes per day and years of smoking),

physical activity in daily life (3 categories), recreational exercise (3 categories),

and weight (in kg). That is,  represents a vector of 9 measured covariates. In

the next section we use IP weighting to adjust for these covariates.

12.2 Estimating IP weights via modeling

IP weighting creates a pseudo-population in which the arrow from the con-

founders  to the treatment  is removed. Thus, if the confounders  are

sufficient to block all backdoor paths from  to  , then all confounding is

eliminated in the pseudo-population. That is, the association between  and

 in the pseudo-population consistently estimates the causal effect of  on  .

Please reread Chapters 2 and 7 if you need a refresher on IP weighting.

Informally, the pseudo-population is created by weighting each individ-

ual by the inverse of the conditional probability of receiving the treatment
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level that she indeed received. The individual-specific IP weights for treat-

ment  are defined as  = 1 (|). The denominator  (|) of the
IP weight is the probability of quitting conditional on the measured con-

founders, Pr [ = 1|], for the quitters, and the probability of not quittingThe conditional probability of treat-

ment Pr [ = 1|] is known as

the propensity score. More about

propensity scores in Chapter 15.

conditional on the measured confounders, Pr [ = 0|], for the non-quitters.
For a dichotomous treatment , we only need to estimate Pr [ = 1|] because
Pr [ = 0|] = 1− Pr [ = 1|].
In Section 2.4 we estimated the quantity Pr [ = 1|] nonparametrically:

we simply counted how many people were treated ( = 1) in each stratum of

, and then divided this count by the number of individuals in the stratum.

All the information required for this calculation was taken from a causally

structured tree with 4 branches (2 for  times 2 for ). But nonparametric

estimation of Pr [ = 1|] is out of the question when, as in our example, we
have high-dimensional data with many confounders, some of them with multi-

ple levels. Even if we were willing to recode all 9 confounders except age to aThe curse of dimensionality was in-

troduced in Chapter 10. maximum of 6 categories each, our tree would still have over 2 million branches.

And many more millions if we use the actual range of values of duration and

intensity of smoking, and weight. We cannot obtain meaningful nonparametric

stratum-specific estimates when there are 1566 individuals distributed across

millions of strata. We need to resort to modeling.

To obtain parametric estimates of Pr [ = 1|] in each of the millions of
strata defined by , we fit a logistic regression model for the probability of

quitting smoking with all 9 confounders included as covariates. We used linear

and quadratic terms for the (quasi-)continuous covariates age, weight, inten-

sity and duration of smoking, and we included no product terms between the

covariates. That is, our model restricts the possible values of Pr [ = 1|] such
that, on the logit scale, the conditional relation between the continuous covari-

ates and the risk of quitting can be represented by a parabolic curve, and each

covariate’s contribution to the risk is independent of that of the other covari-

ates. Under these parametric restrictions, we were able to obtain an estimatecode: Program 12.2
The estimated IP weights 

ranged from 1.05 to 16.7, and their

mean was 2.00.

cPr [ = 1|] for each combination of  values, and therefore for each of the

1566 individuals in the study population.

The next step is computing the difference bE[ | = 1]− bE[ | = 0] in the
pseudo-population created by the estimated IP weights. If there is no confound-

ing for the effect of  in the pseudo-population, association is causation and

a consistent estimator of the associational difference E[ | = 1]−E[ | = 0]
in the pseudo-population is also a consistent estimator of the causal difference

E[ =1] − E[ =0]. To estimate E[ | = 1] − E[ | = 0] in the pseudo-

population, we fit the (saturated) linear mean model E[ |] = 0 + 1 by

weighted least squares, with individuals weighted by their estimated IP weights:The weighted least squares esti-

mates ̂0 and ̂1 with weight 

of 0 and 1 are the minimizers

of
P

 [ − (0 + 1)]
2
. If

 = 1 for all subjects, we obtain

the ordinary least squares estimates

described in the previous chapter.

The estimate bE[ | = 1] = ̂0 +

̂1 is equal to

P
=1 P
=1

where

the sum is over all subjects with

 = .

1cPr [ = 1|] for the quitters, and 1³1−cPr [ = 1|]´ for the non-quitters.
The parameter estimate ̂1 was 34. That is, we estimated that quitting smok-

ing increases weight by ̂1 = 34 kg on average.

To obtain a 95% confidence interval around the point estimate ̂1 = 34

we need a method that takes the IP weighting into account. One possibil-

ity is to use statistical theory to derive the corresponding variance estimator.

This approach requires that the data analyst programs the estimator, which

is not generally available in standard statistical software. A second possibility

is to approximate the variance by nonparametric bootstrapping (see Techni-

cal Point 13.1). This approach requires appropriate computing resources, or

lots of patience, for large databases. A third possibility is to use the robust

variance estimator (e.g., as used for GEE models with an independent working
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Technical Point 12.1

Horvitz-Thompson estimators. In Technical Point 3.1, we defined the “apparent” IP weighted mean for treatment

level , E

∙
 ( = )

 (|)
¸
, which is equal to the counterfactual mean E[ ] under positivity and exchangeability. This

IP weighted mean is consistently estimated by the original Horvitz-Thompson (1952) estimator bE ∙ ( = )

 (|)
¸
. In

this chapter, however, we estimated E[ ] via the IP weighted least squares estimate ̂0 + ̂1, which is the modified

Horvitz-Thompson estimator

bE ∙ ( = )

 (|)
¸

bE∙ ( = )

 (|)
¸ used to estimate the parameters of marginal structural models (Robins

1998).

This modified Horvitz-Thompson estimator is a consistent estimator of

E

∙
 ( = )

 (|)
¸

E

∙
 ( = )

 (|)
¸ which, under positivity, is

equal to E

∙
 ( = )

 (|)
¸
because E

∙
 ( = )

 (|)
¸
= 1 (though the original and and the modified Horvitz-Thompson

estimators may still yield different estimates in the sample sizes observed in practice).

On the other hand, if positivity does not hold, then

E

∙
 ( = )

 (|)
¸

E

∙
 ( = )

 (|)
¸ equals

P


E [ | =  =   ∈ ()] Pr [ = | ∈ ()] and, if exchangeability holds, it equals E [ | ∈ ()] where

() = {; Pr ( = | = )  0} is the set of values  for which  =  may be observed with positive probability.

Therefore, as discussed in Technical Point 3.1, the difference between modified Horvitz-Thompson estimators with

 = 1 versus  = 0 does not have a causal interpretation in the absence of positivity.

correlation) that is a standard option in most statistical software packages.E[ |] = 0 + 1 is a saturated

model because it has 2 parameters,

0 and 1, to estimate two quanti-

ties, E[ | = 1] and E[ | = 0].
In this model, 1 = E[ | = 1] −
E[ | = 0].

The 95% confidence intervals based on the robust variance estimator are valid

but conservative–they cover the super-population parameter more than 95%

of the time. The conservative 95% confidence interval around ̂1 was (24 45).

In this chapter, all confidence intervals for IP weighted estimates are conserv-

ative. If the model for Pr [ = 1|] is misspecified, the estimates of 0 and 1
will be biased and, like we discussed in the previous chapter, the confidence

intervals may cover the true values less than 95% of the time.

12.3 Stabilized IP weights

The goal of IP weighting is to create a pseudo-population in which there is

no association between the covariates  and treatment . The IP weights

 = 1 (|) simulate a pseudo-population in which all members of the
study population are replaced by two copies of themselves. One copy receives

treatment value  = 1 and the other copy receives treatment value  = 0.

In Chapter 2 we showed how the original study population in Figure 2.1 was

transformed into the pseudo-population in Figure 2.3. The pseudo-population
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was twice as large as the study population because all 20 individuals were

included both under treatment and under no treatment. Equivalently, the

expected mean of the weights  was 2.

The IP weights  = 1 (|) adjust for confounding by  because they
create a pseudo-population in which all individuals have the same probability

of receiving  = 1 (a probability equal to 1) and the same probability of

receiving  = 0 (also 1). Therefore  and  are independent in the pseudo-

population–all backdoor paths from  to the outcome  via  are eliminated.

However, there are other ways to create a pseudo-population in which  and

 are independent. For example, a pseudo-population in which all individuals

have a probability of receiving  = 1 equal to 05–rather than 1–and a

probability of receiving  = 0 also equal to 05, regardless of their values of

. Such pseudo-population is constructed by using IP weights 05 (|).
This pseudo-population would be of the same size as the study population.

Equivalently, the expected mean of the weights 05 (|) is 1.

The effect estimate obtained in the pseudo-population created by weights

05 (|) is equal to that obtained in the pseudo-population created by
weights 1 (|). (You can check this empirically by using the data in FigureThe average causal effect in the

treated subpopulation can be esti-

mated by using IP weights in which

 = Pr[ = 1|]. See technical
Point 4.1.

2.1, or see the proof in Technical Point 12.2.) The same goes for any other IP

weights  (|) with 0   ≤ 1. The weights  = 1 (|) are just one
particular example of IP weights with  = 1.

Let us take our reasoning a step further. The key requirement for confound-

ing adjustment is that, in the pseudo-population, the probability of treatment

 does not depend on the confounders . We can achieve this requirement

by assigning treatment with the same probability  to everyone in the pseudo-

population. But we can also achieve it by creating a pseudo-population in

which different people have different probabilities of treatment, as long as the

probability of treatment does not depend on the value of . For example, a

common choice is to assign to the treated the probability of receiving treatment

Pr [ = 1] in the original population, and to the untreated the probability of

not receiving treatment Pr [ = 0] in the original population. Thus the IP

weights are Pr [ = 1]  (|) for the treated and Pr [ = 0]  (|) for the
untreated or, more compactly,  ()  (|).

Figure 12.1 shows the pseudo-population created by the weights  ()  (|)
applied to the data in Figure 2.1, where Pr [ = 1] = 1320 = 065 and

Pr [ = 0] = 720 = 035. Under the identifiability conditions of Chapter

3, the pseudo-population resembles a hypothetical randomized experiment in

which 65% of the individuals in the study population have been randomly as-

signed to  = 1, and 35% to  = 0. Note that, to preserve the 6535 ratio,

the number of individuals in each branch cannot be integers. Fortunately,

non-whole people are no big deal in mathematics.

The weights  ()  (|) range from 07 to 14, whereas the weights

1 (|) range from 133 to 4. The stabilizing factor  () in the numer-

ator is responsible for the narrower range of the  ()  (|) weights. The
IP weights  = 1 (|) are referred to as nonstabilized weights, and the
IP weights  =  ()  (|) are referred to as stabilized weights. The
mean of the stabilized weights is expected to be 1 because the size of the

pseudo-population equals that of the study population.
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Figure 12.1

Let us now re-estimate the effect of quitting smoking on body weight by

using the stabilized IP weights . First, we need an estimate of the con-

ditional probability Pr [ = 1|] to construct the denominator of the weights.In real data analyses one should

always check that the estimated

weights  have mean 1. For a

proof of this result, see Hernán and

Robins (2004). Deviations from 1

indicate model misspecification or

possible violations, or near viola-

tions, of positivity.

We use the same logistic model we used in Section 12.2 to obtain a parametric

estimate cPr [ = 1|] for each of the 1566 individuals in the study population.
Second, we need to estimate Pr [ = 1] for the numerator of the weights. We

can obtain a nonparametric estimate by the ratio 4031566 or, equivalently,

by fitting a saturated logistic model for Pr [ = 1] with an intercept and no

covariates. Finally, we estimate the causal difference E[ =1] − E[ =0] by

fitting the mean model E[ |] = 0 + 1 with individuals weighted by their

estimated stabilized IP weights: cPr [ = 1] cPr [ = 1|] for the quitters, and³
1−cPr [ = 1]´ ³1−cPr [ = 1|]´ for the non-quitters. Under our assump-
tions, we estimated that quitting smoking increases weight by ̂1 = 34 kg (95%

CI: 24, 45) on average. This is the same estimate we obtained earlier usingcode: Program 12.3
The estimated IP weights 

ranged from 0.33 to 4.30, and their

mean was 1.00.

the nonstabilized IP weights  rather than the stabilized IP weights .

If nonstabilized and stabilized IP weights result in the same estimate, why

use stabilized IP weights then? Because stabilized weights typically result in

narrower 95% confidence intervals than nonstabilized weights. However, the

statistical superiority of the stabilized weights can only occur when the (IP

weighted) model is not saturated. In our above example, the two-parameter

model E[ |] = 0 + 1 was saturated because treatment  could only take

2 possible values. In many settings (e.g., time-varying or continuous treat-

ments), the weighted model cannot possibly be saturated and therefore stabi-

lized weights are used. The next section describes the use of stabilized weights

for a continuous treatment.



IP weighting and marginal structural models 17

Fine Point 12.2

Checking positivity. In our study, there are 4 white women aged 66 years and none of them quit smoking. That is, the

probability of  = 1 conditional on (a subset of)  is 0. Positivity, a condition for IP weighting, is empirically violated.

There are two possible ways in which positivity can be violated:

• Structural violations: The type of violations described in Chapter 3. Individuals with certain values of  cannot
possibly be treated (or untreated). An example: when estimating the effect of exposure to certain chemicals on

mortality, being off work is an important confounder because people off work are more likely to be sick and to die,

and a determinant of chemical exposure–people can only be exposed to the chemical while at work. That is, the

structure of the problem guarantees that the probability of treatment conditional on being off work is exactly 0

(a structural zero). We’ll always find zero cells when conditioning on that confounder.

• Random violations: The type of violations described in the first paragraph of this Fine Point. Our sample is finite
so, if we stratify on several confounders, we will start finding zero cells at some places even if the probability

of treatment is not really zero in the target population. This is a random, not structural, violation of positivity

because the zeroes appear randomly at different places in different samples of the target population. An example:

our study happened to include 0 treated individuals in the strata “white women age 66” and “white women age

67”, but it included a positive number of treated individuals in the strata “white women age 65” and “white

women age 69.”

Each type of positivity violation has different consequences. In the presence of structural violations, causal inferences

cannot be made about the entire population using IP weighting or standardization. The inference needs to be restricted

to strata in which structural positivity holds. See Technical Point 12.1 for details. In the presence of random violations,

we used our parametric model to estimate the probability of treatment in the strata with random zeroes using data

from individuals in the other strata. In other words, we use parametric models to smooth over the zeroes. For example,

the logistic model used in Section 12.2 estimated the probability of quitting in white women aged 66 by interpolating

from all other individuals in the study. Every time we use parametric estimation of IP weights in the presence of zero

cells–like we did in estimating ̂1 = 34–, we are effectively assuming random nonpositivity.

12.4 Marginal structural models

Consider the following linear model for the average outcome under treatment

level A (saturated) marginal structural

mean model for a dichotomous

treatment .
E[ ] = 0 + 1

This model is different from all models we have considered so far: the out-

come variable of this model is counterfactual–and hence generally unobserved.

Therefore the model cannot be fit to the data of any real-world study. Models

for mean counterfactual outcomes are referred to as structural mean models.

When, as in this case, the structural mean model does not include any covari-

ates we refer to it as an unconditional or marginal structural mean model.

The parameters for treatment in structural models correspond to average

causal effects. In the above model, the parameter 1 is equal to E[
=1] −

E[ =0] because E[ ] = 0 under  = 0 and E[
] = 0 + 1 under  = 1.

In previous sections, we have estimated the average causal effect of smoking

cessation  on weight change  defined as E[ =1]−E[ =0]. In other words,

we have estimated the parameter 1 of a marginal structural model.

Specifically, we used IP weighting to construct a pseudo-population, and

then fit the model E[ |] = 0 + 1 to the pseudo-population data by using

IP-weighted least squares. Under our assumptions, association is causation

in the pseudo-population. That is, the parameter 1 from the IP-weighted
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associational model E[ |] = 0 + 1 can be endowed with the same causal

interpretation as the parameter 1 from the structural model E[ ] = 0 +

1. It follows that a consistent estimate ̂1 of the associational parameter

in the pseudo-population is also a consistent estimator of the causal effect

1 = E[
=1]− E[ =0] in the population.

The marginal structural model E[ ] = 0 + 1 is saturated because

smoking cessation  is a dichotomous treatment. That is, the model has 2

unknowns on both sides of the equation: E[ =1] and E[ =0] on the left-hand

side, and 0 and 1 on the right-hand side. Thus sample averages computed

in the pseudo-population were enough to estimate the causal effect of interest.A desirable property of marginal

structural models is null preserva-

tion (see Chapter 9): when the null

hypothesis of no average causal ef-

fect is true, a marginal structural

model is never misspecified. For

example, under marginal structural

model E[ ] = 0 + 1 + 2
2,

a Wald test on two degrees of free-

dom of the joint hypothesis 1 =

2 = 0 is a valid test of the null

hypothesis.

But treatments are often polytomous or continuous. For example, consider

the new treatment  “change in smoking intensity” defined as number of ciga-

rettes smoked per day in 1982 minus number of cigarettes smoked per day at

baseline. Treatment  can now take many values, e.g., −25 if an individual
decreased his number of daily cigarettes by 25, 40 if an individual increased

his number of daily cigarettes by 40. Let us say that we are interested in

estimating the difference in average weight change under different changes in

treatment intensity in the 1162 individuals who smoked 25 or fewer cigarettes

per day at baseline. That is, we want to estimate E[ ]−E[ 0 ] for any values

 and 0.
Because treatment  can take dozens of values, a saturated model with

as many parameters becomes impractical. We will have to consider a non-

saturated structural model to specify the dose-response curve for the effect of

treatment  on the mean outcome  . If we believe that a parabola appropri-

ately describes the dose-response curve, then we would propose the marginal

structural modelA (nonsaturated) marginal struc-

tural mean model for a continuous

treatment .
E[ ] = 0 + 1+ 2

2

where 2 =  ×  is -squared and E[ =0] = 0 is the average weight gain

under  = 0, i.e., under no change in smoking intensity between baseline and

1982.

Suppose we want to estimate the average causal effect of increasing smoking

intensity by 20 cigarettes per day compared with no change, i.e., E[ =20] −
E[ =0]. According to our structural model, E[ =20] = 0 + 201 + 4002,

and thus E[ =20] − E[ =0] = 201 + 4002. Now we need to estimate the

parameters 1 and 2. To do so, we need to estimate IP weights 
 to

create a pseudo-population in which there is no confounding by , and then

fit the associational model E[ |] = 0+1+2
2 to the pseudo-population

data.

To estimate the stabilized weights  =  ()  (|) we need to es-
timate  (|). For a dichotomous treatment ,  (|) was a probability
and we used a logistic model to estimate Pr [ = 1|]. For a continuous treat-
ment ,  (|) is a probability density function (pdf). Unfortunately, pdfscode: Program 12.4

The estimated  ranged from

019 to 510 with mean 100. We

assumed constant variance (ho-

moscedasticity), which seemed rea-

sonable after inspecting a residuals

plot. Other choices of distribution

(e.g., truncated normal with het-

eroscedasticity) resulted in similar

estimates.

are generally hard to estimate correctly, which is why using IP weighting for

continuous treatments will often be dangerous. In our example, we assumed

that the density  (|) was normal (Gaussian) with mean  = E[|] and
variance 2. We then used a linear regression model to estimate the mean

E[|] and variance of residuals 2 for all combinations of values of . We
also assumed that the density  () in the numerator was normal. One should

be careful when using IP weighting for continuous treatments because the ef-

fect estimates may be exquisitely sensitive to the choice of the model for the

conditional density  (|).
Our IP weighted estimates of the parameters of the marginal structural
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model were ̂0 = 200, ̂1 = −011, and ̂2 = 0003. According to these

estimates, the mean weight gain (95% CI) would have been 20 kg (14, 26) if

all individuals have kept their smoking intensity constant, and −02 kg (−15,
11) if all individuals had increased smoking by 20 cigarettes/day between

baseline and 1982.

One can also consider a marginal structural model for a dichotomous out-

come. For example, if interested in the causal effect of quitting smoking  (1:

yes, 0: no) on the risk of death  (1: yes, 0: no) by 1992, one could consider

a marginal structural logistic model likeThis is a saturated marginal struc-

tural logistic model for a dichoto-

mous treatment. For a continuous

treatment, we would specify a non-

saturated logistic model.

logit Pr[ = 1] = 0 + 1

where exp (1) is the causal odds ratio of death for quitting versus not quitting

smoking. The parameters of this model are consistently estimated, under our

assumptions, by fitting the logistic model logit Pr[ = 1|] = 0 + 1 to

the pseudo-population created by IP weighting. We estimated the causal oddscode: Program 12.5

ratio (95% CI) to be exp
³
̂1

´
= 10 (08, 14).

12.5 Effect modification and marginal structural models

Marginal structural models do not include covariates when the target parame-

ter is the average causal effect in the population. However, one may include

covariates in a marginal structural model to assess effect modification. Sup-

pose it is hypothesized that the effect of smoking cessation varies by sex  (1:

woman, 0: man). To examine this hypothesis, we add the covariate  to our

marginal structural mean model:

E [ | ] = 0 + 1+ 2 + 3

Additive effect modification is present if 2 6= 0. Technically, this is not a mar-
ginal model any more–because it is conditional on –but the term “marginal

structural model” is still applied.Also note that the parameter 3
does not generally have a causal

interpretation as the effect of  .

Remember that we are assuming

exchangeability, positivity and well-

defined interventions for treatment

, not for sex  !

We can estimate the model parameters by fitting the linear regression model

E [ |  ] = 0+1+ 2 +3 via weighted least squares with IP weights

 or . The vector of covariates  needs to include  and any other

variables that are needed to ensure exchangeability within levels of  .

Because we are considering a model for the effect of treatment within levels

of  , we now have the choice to use either  [] or  [| ] in the numera-
tor of the stabilized weights. IP weighting based on the stabilized weights

 ( ) =
 [| ]
 [|] generally results in a narrower confidence intervals around

the effect estimates. Some intuition for the increased statistical efficiency of

 ( ): with  in the conditioning event of both the numerator and the

denominator, the numerical value of numerator and denominator gets closer,

which results in added stabilization for (less variability in) the IP weights and

therefore narrower 95% confidence intervals. We estimate  ( ) using the

same approach as for , except that we add the covariate  to the logistic

model for the numerator of the weights.

The particular subset  of  that an investigator chooses to include the

marginal structural model should only reflect the investigator’s substantive in-

terest. For example, a variable  should be included in the marginal structural
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model only if the investigator both believes that  may be an effect modifier

and has greater substantive interest in the causal effect of treatment within

levels of the covariate  than in the entire population. In our example, we

found no strong evidence of effect modification by sex as the 95% confidence

interval around the parameter estimate ̂2 was (−22, 19). If the investigatorcode: Program 12.6
chooses to include all variables  in the marginal structural model, then the

stabilized weights  () equal 1 and no IP weighting is necessary because

the (unweighted) outcome regression model, if correctly specified, fully adjusts

for all confounding by  (see Chapter 15). For this reason, in a slightly hu-

morous vein, we refer to a marginal structural model that conditions on all

variables  needed for exchangeability as a faux marginal structural model.

In Part I we discussed that effect modification and confounding are two

logically distinct concepts. Nonetheless, many students have difficulty under-

standing the distinction because the same statistical methods–stratification

(Chapter 4) or regression (Chapter 15)–are often used both for confounder ad-

justment and detection of effect modification. Thus, there may be some advan-

tage to teaching these concepts using marginal structural models, because then

methods for confounder adjustment (IP weighting) are distinct from methods

for detection of effect modification (adding treatment-covariate product terms

to a marginal structural model).

12.6 Censoring and missing data

When estimating the causal effect of smoking cessation  on weight gain  ,

we restricted the analysis to the 1566 individuals with a body weight mea-

surement at the end of follow-up in 1982. There were, however, 63 additional

individuals who met our eligibility criteria but were excluded from the analysis

because their weight in 1982 was not known. Selecting only individuals with

nonmissing outcome values–that is, censoring from the analysis those with

missing values–may introduce selection bias, as discussed in Chapter 8.

Let censoring  be an indicator for measurement of body weight in 1982:

1 if body weight is unmeasured (i.e., the individual is censored), and 0 if

body weight is measured (i.e., the individual is uncensored). Our analysis

was necessarily restricted to uncensored individuals, i.e., those with  = 0,

because those were the only ones with known values of the outcome  . That

is, in sections 12.2 and 12.4 we did not fit the (weighted) outcome regression

model E[ |] = 0 + 1, but rather the model E[ | = 0] = 0 + 1

restricted to individuals with  = 0.

Unfortunately, as described in Chapter 8, selecting only uncensored indi-

viduals for the analysis is expected to induce bias when  is either a collider

on a pathway between treatment  and the outcome  , or the descendant of

one such collider. See the causal diagrams in Figures 8.3 to 8.6. Our data are

consistent with the structure depicted by those causal diagrams: treatment 

is associated with censoring –58% of quitters versus 32% nonquitters were

censored–and at least some predictors of  are associated with –the aver-

age baseline weight was 766 kg in the censored versus 708 in the uncensored.

When censoring due to loss to follow-up can introduce selection bias, we

turn our attention to the causal effect if nobody in the study population had

been censored. In our example, the goal becomes estimating the mean weight

gain if everybody had quit smoking and nobody’s outcome had been censored,

E[ =1=0], and the mean weight gain if nobody had quit smoking and no-
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body’s outcome had been censored E[ =0=0]. Then the causal effect of

interest is E[ =1=0]−E[ =0=0], a joint effect of  and  as we discussed

in Chapter 8. The use of the superscript  = 0 makes it explicit the causal con-

trast that many have in mind when they refer to the causal effect of treatment

, even if they choose not to use the superscript  = 0.

This causal effect can be estimated by using IP weights =×

under exchangeability for the joint treatment () conditional on , that is,The IP weights for censoring

and treatment are  =

1 ( = 0|), where the joint
density of  and  is factored

as  ( = 0|) =  (|) ×
Pr [ = 0|].
Some variables in  may have

zero coefficients in the model for

 (|) but not in the model

for Pr [ = 0|], or vice versa.
Nonetheless, in large samples, it is

always more efficient to keep all

variables  that independenty pre-

dict the outcome in both models.

 =1=0 q () |. If some of the variables in  are affected by treatment

, e.g., as in Figure 8.4, this conditional independence will not generally hold.

In Part III we show that there are alternative exchangeability conditions that

license us to use IP weighting to estimate the joint effect of  and  when

some components of  are affected by treatment.

Remember that the weights  = 1Pr [ = 0|] create a pseudo-
population with the same size as that of the original study population before

censoring, and in which there is no arrow from either  or  into . In our

example, the estimates of IP weights for censoring  will create a pseudo-

population with (approximately) 1566 + 63 = 1629 in which the 63 censored

individuals are replaced by copies of uncensored individuals with the same

values of treatment  and covariates . That is, we fit the weighted model

E[ | = 0] = 0 + 1 with weights  to estimate the parameters of

the marginal structural model E[ =0] = 0 + 1.

Alternatively, one can use stabilized IP weights  =  ×  .

The censoring weights  = Pr [ = 0|] Pr [ = 0|] create a pseudo-
population of the same size as the original study population after censoring,

and in which there is no arrows from  into . In our example, the estimates

of IP weights for censoring  will create a pseudo-population of (approxi-The estimated IP weights 

have mean 1 when the model for

Pr [ = 0|] is correctly specified.
mately) 1566 uncensored individuals who have the same distribution of covari-

ates  as the 63 censored individuals not included in the pseudo-population.

The stabilized weights do not eliminate censoring in the pseudo-population,

they make censoring occur at random with respect to the measured covariates

. Therefore, under the assumption of conditional exchangeability of censored

and uncensored individuals given  (and ), the proportion of censored indi-

viduals in the pseudo-population is identical to that in the study population.

That is, there is selection but no selection bias.

To obtain parametric estimates of Pr [ = 0|] in our example, we fit a
logistic regression model for the probability of being uncensored to the 1629

individuals in the study population. The model included the same covariates

we used earlier to estimate the weights for treatment. Under these paramet-

ric restrictions, we obtained an estimate cPr [ = 0|] and an estimate of
 for each of the 1566 uncensored individuals. Using the stabilized weightscode: Program 12.7

The estimated IP weights 

ranged from 0.35 to 4.09, and their

mean was 1.00.

 =  ×  we estimated that quitting smoking increases weight

by ̂1 = 35 kg (95% CI: 25, 45) on average. This is almost the same estimate

we obtained earlier using IP weights , which suggests that either there is

no selection bias by censoring or that our measured covariates are unable to

eliminate it.

We now describe an alternative to IP weighting to adjust for confounding

and selection bias: standardization.
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Technical Point 12.2

More on stabilized weights. The stabilized weights  =
 []

 [|] are part of the larger class of stabilized weights
 []

 [|] , where  [] is any function of  that is not a function of . When unsaturated structural models are used,

weights
 []

 [|] are preferable over weights
1

 [|] because there exist functions  [] (often  []) that can be used
to construct more efficient estimators of the causal effect in a nonsaturated marginal structural model. We now show

that the IP weighted mean with weights
 []

 [|] is equal to the counterfactual mean E [
].

First note that the IP weighted mean E

∙
 ( = )

 (|)
¸
using weights 1 [|], which is equal to E [ ], can also

be expressed as

E

∙
 ( = )

 (|)
¸

E

∙
 ( = )

 (|)
¸ because E

∙
 ( = )

 (|)
¸
= 1. Similarly, the IP weighted mean using weights

 []

 [|]

can be expressed as

E

∙
 ( = )

 (|) ()

¸
E

∙
 ( = )

 (|) ()

¸ , which is also equal to E [ ]. The proof proceeds as in Technical Point 2.2

to show that the numerator E

∙
 ( = )

 (|) ()

¸
= E [ ] (), and that the denominator E

∙
 ( = )

 (|) ()

¸
= ().



Chapter 13
STANDARDIZATION AND THE PARAMETRIC G-FORMULA

In this chapter we describe how to use standardization to estimate the average causal effect of smoking cessation

on body weight gain. We use the same observational data set as in the previous chapter. Though standardization

was introduced in Chapter 2, we only described it as a nonparametric method. We now describe the use of models

together with standardization, which will allow us to tackle high-dimensional problems with many covariates and

nondichotomous treatments. We provide computer code to conduct the analyses.

In practice, investigators will often have a choice between IP weighting and standardization as the analytic

approach to obtain effect estimates from observational data. Both methods are based on the same identifiability

conditions, but on different modeling assumptions.

13.1 Standardization as an alternative to IP weighting

In the previous chapter we estimated the average causal effect of smoking ces-

sation  (1: yes, 0: no) on weight gain  (measured in kg) using IP weighting.

In this chapter we will estimate the same effect using standardization. Our

analyses will also be based on NHEFS data from 1629 cigarette smokers aged

25-74 years who had a baseline visit and a follow-up visit about 10 years later.

Of these, 1566 individuals had their weight measured at the follow-up visit and

are therefore uncensored ( = 0).

We define E[ =0] as the mean weight gain that would have been observed

if all subjects had received treatment level  and if no subjects had been cen-

sored. The average causal effect of smoking cessation can be expressed as the

difference E[ =1=0] − E[ =0=0], that is, the difference in mean weight

that would have been observed if everybody had been treated and uncensored

compared with untreated and uncensored.

As shown in Table 12.1, quitters ( = 1) and non-quitters ( = 0) differ

with respect to the distribution of predictors of weight gain. The observed

associational difference E[ | = 1  = 0] − E[ | = 0  = 0] = 25 is

expected to differ from the causal difference E[ =1=0]−E[ =0=0]. Again

we assume that the vector of variables  is sufficient to adjust for confounding

and selection bias, and that  includes the baseline variables sex (0: male,

1: female), age (in years), race (0: white, 1: other), education (5 categories),

intensity and duration of smoking (number of cigarettes per day and years of

smoking), physical activity in daily life (3 categories), recreational exercise (3

categories), and weight (in kg).

One way to adjust for the variables  is IP weighting, which creates aAs in the previous chapter, we will

assume that the components of 

required to adjust for  are unaf-

fected by . Otherwise, we would

need to use the more general ap-

proach described in Part III.

pseudo-population in which the distribution of the variables in  is the same

in the treated and in the untreated. Then, under the assumptions of exchange-

ability and positivity given , we estimate E[ =0] by simply computingbE[ | =  = 0] as the average outcome in the pseudo-population. If 

were a continuous treatment (contrary to our example), we would also need a

structural model to estimate E[ | = 0] in the pseudo-population for all

possible values of . IP weighting requires estimating the joint distribution of
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treatment and censoring. For the dichotomous treatment smoking cessation,

we estimated Pr [ =  = 0|] and computed IP probability weights with
this joint probability in the denominator.

As discussed in Chapter 2, an alternative to IP weighting is standardiza-

tion. Under exchangeability and positivity conditional on the variables in ,

the standardized mean outcome in the uncensored treated is a consistent es-Technical Point 2.3 proves that, un-

der conditional exchangeability and

positivity, the standardized mean

in the treated equals the mean if

everyone had been treated. The ex-

tension to censoring is trivial: just

replace  =  by ( =  = 0)

in the proof and definitions.

timator of the mean outcome if everyone had been treated and had remained

uncensored E[ =1=0]. Analogously, the standardized mean outcome in the

uncensored untreated is a consistent estimator of the mean outcome if everyone

had been untreated and had remained uncensored E[ =0=0].

To compute the standardized mean outcome in the uncensored treated, we

first need to compute the mean outcomes in the uncensored treated in each stra-

tum  of the confounders , i.e., the conditional means E[ | = 1  = 0  = ]

in each of the strata . In our smoking cessation example, we would need to

compute the mean weight gain  among those who quit smoking and remained

uncensored in each of the (possibly millions of) strata defined by the combina-

tion of values of the 9 variables in . The standardized mean in the uncensored

treated is then the weighted average of these conditional means using as weights

the prevalence of each value  in the study population, i.e., Pr [ = ]. That

is, the conditional mean from the stratum with the greatest number of indi-

viduals has the greatest weight in the computation of the standardized mean.

The standardized mean in the uncensored untreated is computed analogously

except that the  = 1 in the conditioning event is replaced by  = 0.

More compactly, the standardized mean in the uncensored who receivedThe average causal effect in the

treated can be estimated by stan-

dardization as described in Techni-

cal Point 4.1. One just needs to

replace Pr[ = ] by Pr[ = | =
1] in the expression to the right.

treatment level  isX


E[ | =  = 0  = ]× Pr [ = ]

When, as in our example, some of the variables in  are continuous, one needs

to replace Pr [ = ] by the probability density function (pdf)  [], and the
above sum becomes an integral.

The next two sections describe how to estimate the conditional means of

the outcome  and the distribution of the confounders , the two types of

quantities required to estimate the standardized mean.

13.2 Estimating the mean outcome via modeling

Ideally, we would estimate the set of conditional means E[ | = 1  = 0  =
] nonparametrically. We would compute the average outcome among the un-

censored treated in each of the strata defined by different combination of values

of the variables . This is precisely what we did in Section 2.3, where all the

information required for this calculation was taken from Table 2.2.

But nonparametric estimation of E[ | = 1  = 0  = ] is out of the

question when, as in our current example, we have high-dimensional data with

many confounders, some of them with multiple levels. We cannot obtain mean-

ingful nonparametric stratum-specific estimates of the mean outcome in the

treated when there are only 403 treated individuals distributed across millions

of strata. We need to resort to modeling. The same rationale applies to the con-

ditional mean outcome in the uncensored untreated E[ | = 0  = 0  = ].

To obtain parametric estimates of E[ | =  = 0  = ] in each of the

millions of strata defined by , we fit a linear regression model for the mean
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Fine Point 13.1

Structural positivity. Lack of structural positivity precludes the unbiased estimation of the average causal effect

in the entire population when using IP weighting. Positivity is also necessary for standardization because, when

Pr [ = | = ] = 0 and Pr [ = ] 6= 0, then the conditional mean outcome E[ | =   = ] is undefined.

But the practical impact of deviations from positivity may vary greatly between IP weighted and standardized

estimates that rely on parametric models. When using standardization, one can ignore the lack of positivity if one

is willing to rely on parametric extrapolation. That is, one can fit a model for E[ |] that will smooth over the
strata with structural zeroes. This smoothing will introduce bias into the estimation, and therefore the nominal 95%

confidence intervals around the estimates will cover the true effect less than 95% of the time. In general, in the presence

of violations or near-violations of positivity, the standard error of the treatment effect will be smaller for standardization

than for IP weighting. This does not necessarily means that standardization is preferred over IP weighting; the difference

in the biases may swamp the differences in standard errors.

weight gain with treatment  and all 9 confounders in  included as covariates.

We used linear and quadratic terms for the (quasi-)continuous covariates age,

weight, intensity and duration of smoking. That is, our model restricts the

possible values of E[ | =  = 0  = ] such that the conditional relation

between the continuous covariates and the mean outcome can be represented

by a parabolic curve. We included a product term between smoking cessation

 and intensity of smoking. That is, our model imposes the restriction that

each covariate’s contribution to the mean is independent of that of the other

covariates, except that the contribution of smoking cessation  varies linearly

with intensity of prior smoking.code: Program 13.1

Under these parametric restrictions, we obtained an estimate bE[ | =

 = 0  = ] for each combination of values of  and , and therefore

for each of the 403 uncensored treated ( = 1  = 0) and each of the 1163

uncensored untreated ( = 0  = 0) individuals in the study population.

For example, we estimated that subjects with the combination of values {non-

quitter, male, white, age 26, college dropout, 15 cigarettes/day, 12 years of

smoking habit, moderate exercise, very active, weight 112 kg} had a mean

weight gain of 034 kg (the subject with unique identifier 24770 happened to

have these combination of values, you may take a look at his predicted value).

Overall, the mean of the estimated weight gain was 26 kg, same as the meanIn general, the standardized mean

of  is written asR
E [ | =  = 0  = ]  ()

where  (·) is the joint cumulative
distribution function (cdf) of the
random variables in . When, as in

this chapter,  is a vector of base-

line covariates unaffected by treat-

ment, we can average over the ob-

served values of  to nonparamet-

rically estimate this integral.

of the observed weight gain, and ranged from −109 to 99 kg across different
combinations of covariates.

Remember that our goal is to estimate the standardized mean
P

 E[ | =
 = 0  = ]×Pr [ = ] in the treated ( = 1) and in the untreated ( = 0).

More formally, the standardized mean should be written as an integral because

some of the variables in  are essentially continuous, and thus their distribution

cannot be represented by a probability function. Regardless of these notational

issues, we have already estimated the means E[ | =  = 0  = ] for all

values of treatment  and confounders . The next step is standardizing these

means to the distribution of the confounders  for all values .
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13.3 Standardizing the mean outcome to the confounder distribution

The standardized mean is a weighted average of the conditional means E[ | =
 = 0  = ]. When all variables in  are discrete, each mean receives aSecond block (All untreated)

  

Rheia 0 0 

Kronos 0 0 

Demeter 0 0 

Hades 0 0 

Hestia 0 0 

Poseidon 0 0 

Hera 0 0 

Zeus 0 0 

Artemis 1 0 

Apollo 1 0 

Leto 1 0 

Ares 1 0 

Athena 1 0 

Hephaestus 1 0 

Aphrodite 1 0 

Cyclope 1 0 

Persephone 1 0 

Hermes 1 0 

Hebe 1 0 

Dionysus 1 0 

Third block: All treated
  

Rheia 0 1 

Kronos 0 1 

Demeter 0 1 

Hades 0 1 

Hestia 0 1 

Poseidon 0 1 

Hera 0 1 

Zeus 0 1 

Artemis 1 1 

Apollo 1 1 

Leto 1 1 

Ares 1 1 

Athena 1 1 

Hephaestus 1 1 

Aphrodite 1 1 

Cyclope 1 1 

Persephone 1 1 

Hermes 1 1 

Hebe 1 1 

Dionysus 1 1 

weight equal to the proportion of subjects with values  = , i.e., Pr [ = ]. In

principle, these proportions Pr [ = ] could be calculated nonparametrically

from the data: we would divide the number of subjects in the strata defined by

 =  by the total number of subjects in the population. This is precisely what

we did in Section 2.3, where all the information required for this calculation

was taken from Table 2.2. However, this method becomes tedious for high-

dimensional data with many confounders, some of them with multiple levels,

as in our smoking cessation example.

We now describe a faster, but mathematically equivalent, method to stan-

dardize means. We first apply the method to the data in Table 2.2, in which

there was no censoring, the confounder  is only one variable with two levels,

and  is a dichotomous outcome, i.e., the mean E[ | =  = ] is the risk

Pr[ = 1| =   = ] of developing the outcome. The goal is to estimate the

standardized means
P

 E[ | =   = ]× Pr [ = ] in the treated ( = 1)

and in the untreated ( = 0). The method has 4 steps: expansion of dataset,

outcome modeling, prediction, and standardization by averaging.

Table 2.2 has 20 rows, one per study subject. We now create a new dataset

in which the data of Table 2.2 is copied three times. That is, the analytic

dataset has 60 rows in three blocks of 20 individuals each. We leave the first

block of 20 rows as is, i.e., the first block is identical to the data in Table 2.2.

We modify the data of the second and third blocks as shown in the margin. In

the second block, we set the value of  to 0 (untreated) for all 20 subjects; in

the third block we set the value of  to 1 (treated) for all subjects. In both the

second and third blocks, we delete the data on the outcome for all subjects,

i.e., the variable  is assigned a missing value. As described below, we will use

the second block to estimate the standardized mean in the untreated and the

third block for the standardized mean in the treated.

Next we use the 3-block dataset to fit a regression model for the mean

outcome given treatment  and the confounder . We add a product term

 ×  to make the model saturated. Note that only the subjects in the first

block of the dataset (the actual data) will contribute to the estimation of the

parameters of the model because the outcome is missing for all subjects in the

second and third blocks.

The next step is to use the parameter estimates from the first block to

predict the outcome values for all rows in the second and third blocks. (That

is, we combine data on  and  with the regression estimates to impute the

missing value for the outcome  .) The predicted outcome values for the second

block are the estimates of the mean outcome for each of the combinations of

values of  and  = 0, and the predicted values for the third block are the

estimates of the mean outcome for all combinations of values of  and  = 1.

Finally, we compute the average of all predicted values in the second block.

Because 60% of rows have value  = 1 and 40% have value  = 0, this average

gives more weight to rows with  = 1. That is, the average of all predicted

values in the second block is precisely the standardized mean outcome in the

untreated. We are done. To estimate the standardized mean outcome in the

treated, we compute the average of all predicted values in the third block.

The above procedure yields exactly the same estimates of the standardizedcode: Program 13.2
means (05 for both of them) as the direct calculation in Section 2.3. Both

approaches are completely nonparametric. In this chapter we did not directly
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Technical Point 13.1

Bootstrapping. Effect estimates are presented with measures of random variability, such as the standard error or the

95% confidence interval, which is a function of the standard error. (We discussed the foundations of variability in Chapter

10.) Because of the computational difficulty to obtain exact estimates, in practice standard error estimates are often

based on large-sample approximations, which rely on asymptotic considerations. However, sometimes even large-sample

approximations are too complicated to be calculated. The bootstrap is an alternative method for estimating standard

errors and computing 95% confidence intervals. The simplest version of the bootstrap, which we used to compute the

95% confidence interval around the effect estimate of smoking cessation, is sketched below.

Take the study population of 1629 individuals. Sample with replacement 1629 individuals from the study population,

so that some of the original individuals may appear more than once while others may not be included at all. This new

sample of size 1629 is referred to as a “bootstrap sample.” Compute the effect of interest in the bootstrap sample (e.g.,

by using standardization as described in the main text). Now create a second bootstrap sample by again sampling with

replacement 1629 individuals. Compute the effect of interest in the second bootstrap sample using the same method

as for the first bootstrap sample. By chance, the first and second bootstrap sample will generally include a different

number of copies of each individual, and therefore will result in different effect estimates. Repeat the procedure in a

large number (say, 1000) of bootstrap samples. It turns out that the standard deviation of the 1000 effect estimates in

the bootstrap samples consistently estimates the standard error of the effect estimate in the study population. The 95%

confidence interval is then computed by using the usual normal approximation: ±1.96 times the estimate of the standard
error. See, for example, Wasserman (2004) for an introduction to the statistical theory underlying the bootstrap.

We used this bootstrap method with 1000 bootstrap samples to obtain the 95% confidence interval described in

the main text for the standardized mean difference. Though the bootstrap is a simple method, it can be computationally

intensive for very large datasets. It is therefore common to see published estimates that are based on only 200-500

bootstrap samples (which would have resulted in an almost identical confidence interval in our example). Finally, note

that the bootstrap is a general method for large samples. We could have also used it to compute a 95% confidence

interval for the IP weighted estimates from marginal structural models in the previous chapter.

estimate the distribution of , but rather average over the observed values of

, i.e., its empirical distribution.

The use of the empirical distribution for standardizing is the way to go in

more realistic examples, like our smoking cessation study, with high-dimensional

. The procedure for our study is the one described above for the data in Ta-

ble 2.2. We add the second and third blocks to the dataset, fit the regression

model for E[ | =  = 0  = ] as described in the previous section,

and generate the predicted values. The average predicted value in the secondcode: Program 13.3
block–the standardized mean in the untreated–was 165, and the average pre-

dicted value in the third block–the standardized mean in the treated– was

511. Therefore, our estimate of the causal effect E[ =1=0] − E[ =0=0]

was 511−165 = 35 kg. To obtain a 95% confidence interval for this estimatecode: Program 13.4
we used a statistical technique known as bootstrapping (see Technical Point

13.1). In summary, we estimated that quitting smoking increases body weight

by 35 kg (95% CI: 26, 44).

13.4 IP weighting or standardization?

We have now described two ways in which modeling can be used to estimate

the average causal effect of a treatment: IP weighting (previous chapter) and

standardization (this chapter). In our smoking cessation example, both yielded
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almost exactly the same effect estimate. Indeed Technical Point 2.3 proved that

the standardized mean equals the IP weighted mean.

Why are we then bothering to estimate the standardized mean in this chap-

ter if we had already estimated the IP weighted mean in the previous chapter?

It turns out that the IP weighted and the standardized mean are only ex-

actly equal when no models are used to estimate them. Otherwise they are

expected to differ. To see this, consider the quantities that need to be mod-

eled to implement either IP weighting or standardization. IP weighting mod-

els Pr [ =  = 0|], which we estimated in the previous chapter by fitting
parametric logistic regression models for Pr [ = |] and Pr [ = 0| =  ].

Standardization models the conditional means E[ | =  = 0  = ], which

we estimated in this chapter using a parametric linear regression model.

In practice some degree of misspecification is inescapable in all models, and

model misspecification will introduce some bias. But the misspecification of

the treatment model (IP weighting) and the outcome model (standardization)

will not generally result in the same magnitude and direction of bias in the ef-

fect estimate. Therefore the IP weighted estimate will generally differ from the

standardized estimate because unavoidable model misspecification will affect

the point estimates differently. Large differences between the IP weighted and

standardized estimate will alert us to the presence of serious model misspec-

ification in at least one of the estimates. Small differences do not guarantee

absence of serious model misspecification, but will be reassuring–though logi-

cally possible, it is unlikely that badly misspecified models resulting in bias of

similar magnitude and direction for both methods.

In our smoking cessation example, both the IP weighted and the standard-

ized estimates are similar. After rounding to one decimal place, the estimated

weight gain due to smoking cessation was 35 kg regardless of whether we fit a

model for treatment  (IP weighting) or for the outcome  (standardization).

Note that in neither case we fit a model for the confounders , as we did not

need the distribution of the confounders to obtain the IP weighted estimate,

and we just used the empirical distribution of  (a nonparametric method) to

compute the standardized estimate.

Computing the standardized mean outcome with parametrically estimated

conditional means is a particular case of the parametric g-formula. Because weRobins (1986) described the gen-

eralization of standardization to

time-varying treatments and con-

founders, and named it the g-

computation algorithm formula,

aka, the g-formula.

were only interested in the average causal effect, we only had to estimate the

conditional mean outcome. More generally, the parametric g-formula uses esti-

mates of any functions of the distribution of the outcome (e.g., functionals like

the probability density function or pdf) within levels of  and  to compute

its standardized value. In the absence of time-varying confounders (see Part

III), as in our example, the parametric g-formula does not require parametric

modeling of the distribution of the confounders.

We used standardization to estimate the average causal effect in the entire

population of interest. Had we been interested in the average causal effect in a

particular subset of the population, we could have restricted our calculations

to that subset. For example, if we had been interested in potential effect

modification by sex, we would have estimated the standardized means in men

and women separately. Both IP weighting and standardization can be used to

estimate average causal effects in either the entire population or a subset of it.

In summary, one should not choose between IP weighting and standardiza-

tion when both methods can be used to answer a causal question. Just use

both methods whenever possible. Further, one can use doubly robust methods

(see Technical Point 13.2) that combine models for treatment and for outcome

in the same approach.
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Technical Point 13.2

Doubly robust methods. The previous chapter describes IP weighting, a method that requires a correct model for

treatment  conditional on the confounders . This chapter describes standardization, a method that requires a correct

model for the outcome  conditional on treatment  and the confounders . How about a method that requires a

correct model for either treatment  or outcome  ? That is precisely what doubly robust estimation does. Under the

usual identifiability assumptions, a doubly robust estimator consistently estimates the causal effect if at least one of the

two models is correct (and one need not know which of the two models is correct). That is, doubly robust estimators

give us two chances to get it right.

There are many types of doubly robust estimators. For example, Bang and Robins (2005) proposed the following

doubly-robust estimator for the average causal effect of a dichotomous treatment  on an outcome  . First, estimate

the IP weight  = 1 (|) as described in the previous chapter. Then fit the outcome model described in this
chapter but adding the covariate , where  =  if  = 1 and  = − if  = 0. That is, fit a model for

E[ | =  = 0  = ]. Finally, use the predicted values from the model to obtain the standardized mean

outcomes under  = 1 and  = 0. The difference of the mean standardized outcome is now doubly robust. That is,

under exchangeability and positivity given , this estimator consistently estimates the average causal effect if either the

model for the treatment or for the outcome is correct. More about doubly robust methods in Chapter REF.

13.5 How seriously do we take our estimates?

We spent Part I of this book reviewing the definition of average causal ef-

fect, the assumptions required to estimate it, and many potential biases. The

discussion was purely conceptual, the data examples hypersimplistic. A key

message was that the analysis of observational studies should emulate that of

ideal randomized experiments as closely as possible.

The analyses in this and the previous chapter are our first attempts at

estimating causal effects from real data. Using both IP weighting and stan-

dardization we estimated that the mean weight gain would have been 52 kg if

everybody had quit smoking compared with 17 kg if nobody had quit smok-

ing. Both methods estimated that quitting smoking increases weight by 35 kg

(95% CI: 25, 45) on average in this particular population. In the next chap-

ters we will see that similar estimates are obtained when using g-estimation,

outcome regression, and propensity scores. The consistency across methods

is reassuring because their estimates are based on different modeling assump-At the very least, the consistency

across methods makes it less likely

that we had a serious programming

error.

tions. However, our effect estimate is open to serious criticism. Even if we

do not wish to transport our effect estimate to other populations (Chapter 4)

and even if there is no interference between subjects, the validity of our esti-

mates for the target population requires many conditions. We classify these

conditions in three groups.

First, the identifiability conditions of exchangeability, positivity, and well-

defined interventions (Chapter 3) need to hold for the observational study to

resemble a randomized experiment. The quitters and the non-quitters need to

be exchangeable conditional on the 9 measured covariates  (see Fine Point

14.2). Both unmeasured confounding (Chapter 7) and selection bias (Chapter

8, Fine Point 12.2) may prevent conditional exchangeability. Positivity requires

that the distribution of the covariates  in the quitters fully overlaps with that

in the non-quitters (see Fine Point 12.1). Regarding well-defined interventions,

note that there are multiple versions of both quitting smoking (e.g., quitting

progressively, quitting abruptly) and not quitting smoking (e.g., increasing

intensity of smoking by 2 cigarettes per day, reducing intensity but not to zero).
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Our effect estimate corresponds to a somewhat vague hypothetical intervention

in the target population that randomly assigns these versions of treatment

with the same frequency as they actually have in the study population. Other

hypothetical interventions might result in a different effect estimate.

Second, all variables used in the analysis need to be correctly measured.

Measurement error in the treatment , the outcome  , or the confounders 

will generally result in bias (Chapter 9).The validity of our causal inferences

requires the following conditions

• exchangeability
• positivity
• well-defined interventions
• no measurement error
• no model misspecification

Third, all models used in the analysis need to be correctly specified (Chap-

ter 11). Suppose that the correct functional form for the continuous covariate

age in the treatment model is not the parabolic curve we used but rather a

curve represented by a complex polynomial. Then, even if all the confounders

had been correctly measured and included in , IP weighting would not fully

adjust for confounding. Model misspecification has a similar effect as measure-

ment error in the confounders.

Ensuring that each of these conditions hold, at least approximately, is the

investigator’s most important task. If these conditions could be guaranteed

to hold, then the data analysis would be trivial. The problem is, of course,

that one cannot ever expect that any of these conditions will hold perfectly.

Unmeasured confounders, nonoverlapping confounder distributions, ill-defined

interventions, mismeasured variables, and misspecified models will typically

lurk behind our estimates. Some of these problems may be addressed em-

pirically, but others will remain a matter of subject-matter judgement, and

therefore open to criticism that cannot be refuted by our data. For example,

we can propose different model specifications but we cannot adjust for variables

that were not measured.

Causal inferences rely on the above conditions, which are heroic and not

empirically testable. We replace the lack of data on the distribution of the

counterfactual outcomes by the assumption that the above conditions are ap-

proximately met. The more our study deviates from those conditions, the

more biased our effect estimate may be. Therefore a healthy skepticism of

causal inferences drawn from observational data is necessary. In fact, a key

step towards less casual causal inferences is the realization that the discussion

should primarily revolve around each of the above assumptions. We only take

our effects estimates as seriously as we take the conditions that are needed to

endow them with a causal interpretation.



Chapter 14
G-ESTIMATION OF STRUCTURAL NESTED MODELS

In the previous two chapters, we described IP weighting and standardization (the g-formula) to estimate the

average causal effect of smoking cessation on body weight gain. In this chapter we describe a third method to

estimate the average causal effect: g-estimation. We use the same observational NHEFS data and provide simple

computer code to conduct the analyses.

IP weighting, the g-formula, and g-estimation are often collectively referred to as g-methods because they

are designed for application to generalized treatments, including time-varying treatments. Their application to

the non-time-varying question discussed in Part II of this book may be then overkill since there are alternative

approaches that many find simpler. However, by presenting these methods in a relatively simple setting, we can

describe the methods while avoiding the more complex issues described in Part III.

IP weighting and standardization were introduced in Part I (Chapter 3) and then described with models in

Part II (Chapters 12 and 13, respectively). In contrast, we have waited until Part II to describe g-estimation.

There is a reason for that: describing g-estimation is facilitated by the specification of a structural model, even if

the model is saturated. Models whose parameters are estimated via g-estimation are known as structural nested

models. The three g-methods are based on different modeling assumptions.

14.1 The causal question revisited

In the last two chapters we have applied IP weighting and standardization to

estimate the average causal effect of smoking cessation (the treatment)  on

weight gain (the outcome)  . To do so, we used data from 1566 cigaretteAs in previous chapters, we re-

stricted the analysis to NHEFS indi-

viduals with known sex, age, race,

weight, height, education, alcohol

use and intensity of smoking at

the baseline (1971-75) and follow-

up (1982) visits, and who answered

the general medical history ques-

tionnaire at baseline.

smokers aged 25-74 years who were classified as treated  = 1 if they quit

smoking, and as untreated  = 0 otherwise. We assumed that exchangeability

of the treated and the untreated was achieved conditional on the  variables:

sex, age, race, education, intensity and duration of smoking, physical activity

in daily life, recreational exercise, and weight. We defined the average causal

effect on the difference scale as E[ =1=0]−E[ =0=0], that is, the difference

in mean weight that would have been observed if everybody had been treated

and uncensored compared with untreated and uncensored.

The quantity E[ =1=0] − E[ =0=0] measures the average causal ef-

fect in the entire population. But sometimes one can be interested in the

average causal effect in a subset of the population. For example, one may

want to estimate the average causal effect in women–E[ =1=0|] −
E[ =0=0|]–, in individuals aged 45, in those with low educational

level, etc. To estimate the effect in a subset of the population one can use

marginal structural models with product terms (see Chapter 12) or apply stan-

dardization to that subset only (Chapter 13).

Suppose that the investigator is interested in estimating the causal effect

of smoking cessation  on weight gain  in each of the strata defined by

combinations of values of the variables . In our example, there are many such

strata. One of them is the stratum {non-quitter, male, white, age 26, college

dropout, 15 cigarettes/day, 12 years of smoking habit, moderate exercise, very

active, weight 112 kg}. As described in Chapter 4, investigators could partition
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the study population into mutually exclusive subsets or non-overlapping strata,

each of them defined by a particular combination of values  of the variables

in , and then estimate the average causal effect in each of the strata. In

Section 12.5 we explain that an alternative approach is to add all variables

, together with product terms between each component of  and treatment

, to the marginal structural model. Then the stabilized weights  ()

equal 1 and no IP weighting is necessary because the (unweighted) outcome

regression model, if correctly specified, fully adjusts for all confounding by 

(see Chapter 15).

In this chapter we will use g-estimation to estimate the average causal effect

of smoking cessation  on weight gain  in each strata defined by the covari-

ates . This conditional effect is represented by E[ =0|]− E[ =0=0|].
Before describing g-estimation, we will present structural nested models and

rank preservation, and, in the next section, articulate the condition of ex-

changeability given  in a new way.

14.2 Exchangeability revisited

As a reminder (see Chapter 2), in our example, conditional exchangeability

implies that, in any subset of the study population in which all individualsYou may find the first paragraph

of this section repetitious and un-

necessary given our previous discus-

sions of conditional exchangeability.

If that is the case, we could not be

happier.

have the same values of , those who did not quit smoking ( = 0) would

have had the same mean weight gain as those who did quit smoking ( = 1) if

they had not quit, and vice versa. In other words, conditional exchangeability

means that the outcome distribution would not differ between the treated

and the untreated with the same covariate values, had they received the same

treatment level. When the distribution of the outcomes   under treatment

level  is the same for the treated and the untreated, each of the counterfactual

outcomes   is independent of the actual treatment level , within levels of

the covariates, or   q| for both  = 1 and  = 0.

Take the counterfactual outcome under no treatment  =0. Under condi-

tional exchangeability, knowing the value of  =0 does not help differentiate

between quitters and nonquitters when we also know the value of . That

is, the conditional (on ) probability of being a quitter is independent of the

counterfactual outcome  =0. Mathematically, we write

Pr[ = 1| =0 ] = Pr[ = 1|]

which is an equivalent definition of conditional exchangeability for a binary

treatment .

Expressing conditional exchangeability in terms of the conditional proba-

bility of treatment will be helpful when we describe g-estimation later in this

chapter. Specifically, suppose we propose the following parametric logistic

model for the probability of treatment

logit Pr[ = 1| =0 ] = 0 + 1
=0 + 2

where 2 is a vector of parameters, one for each component of . If  has For simplicity, we will not distin-

guish between vector and scalar pa-

rameters in this and subsequent

chapters. This is an abuse of no-

tation but we believe it does not

create any confusion.

components 1  then 2 =
P

=1 2 . This model is the same one we

used to estimate the denominator of the IP weights in Chapter 11, except that

this model also includes the counterfactual outcome  =0 as a covariate.

Of course, we can never fit this model to a real data set because we do

not know the value of the variable  =0 for all individuals. But suppose for
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a second that we had data on  =0 for all individuals, and that we fit the

above logistic model. If there is conditional exchangeability and the model

is correctly specified, what estimate would you expect for the parameter 1?

Pause and think about it before going on (the response can be found near the

end of this paragraph) because we will be estimating the parameter 1 when

implementing g-estimation. If you have already guessed what its value should

be, you have already understood half of g-estimation. Yes, the expected value

of the estimate of 1 is zero because 
=0 does not predict  conditional on

. We now introduce the other half of g-estimation: the structural model.

14.3 Structural nested mean models

We are interested in estimating the average causal effect of treatment  within

levels of , that is, E[ =1|] − E[ =0|]. (For simplicity, suppose there is
no censoring until later in this section.) Note that we can also represent this

effect by E[ =1− =0|] because the difference of the means is equal to the
mean of the differences. If there were no effect-measure modification by ,

these differences would be constant across strata, i.e., E[ =1 −  =0|] = 1
where 1 would be the average causal effect in each strata and also in the entire

population. Our structural model for the conditional causal effect would be

E[  −  =0|] = 1.

More generally, there may be effect modification by . For example, the

causal effect of smoking cessation may be greater among heavy smokers than

among light smokers. To allow for the causal effect to depend on  we can add a

product term to the structural model, i.e., E[ − =0|] = 1+2, where

2 is a vector of parameters. Under conditional exchangeability 
q|, the

conditional effect will be the same in the treated and in the untreated because

the treated and the untreated are, on average, the same type of people within

levels of . Thus, under exchangeability, the structural model can also be

written as

E[  −  =0| = ] = 1+ 2

which is referred to as a structural nested mean model. The parameters 1 andRobins (1991) first described the

class of structural nested models.

These models are “nested” when

the treatment is time-varying. See

Part III for an explanation.

2 (again, a vector), which are estimated by g-estimation, quantify the average

causal effect of smoking cessation  on  within levels of  and .

In Chapter 13 we considered parametric models for the mean outcome 

that, like structural nested models, were also conditional on treatment  and

covariates . Those outcome models were the basis for standardization when

estimating the parametric g-formula. In contrast with those parametric mod-

els, structural nested models are semiparametric because they are agnostic

about both the intercept and the main effect of –that is, there is no parame-

ter 0 and no term 3. As a result of leaving these parameters unspecified,

structural nested models make fewer assumptions and can be more robust to

model misspecification than the parametric g-formula. See Fine Point 14.1 for

a description of the relation between structural nested models and the marginal

structural models of Chapter 12.

In the presence of censoring, our causal effect of interest is not E[ =1 −
 =0|] but E[ =1=0− =0=0|]: the average causal effect if every-
body had remained uncensored. Estimating this difference requires adjustment

for both confounding and selection bias (due to censoring  = 1) for the effect

of treatment . As described in the previous two chapters, IP weighting and
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Fine Point 14.1

Relation between marginal structural models and structural nested models. Consider a marginal structural mean

model for the average outcome under treatment level  within levels of the binary covariate  , a component of ,

E[ | ] = 0 + 1+ 2 + 3

The sum 1+2 is the average causal effect E[
=1− =0| = ] in the stratum  = , and the sum 0+3 is the

mean counterfactual outcome under no treatment E[ =0| = ] in the stratum  = . Suppose the only inferential

goal is the average causal effect 1 + 2, i.e., we are not interested in estimating 0 + 3 = E[
=0| = ]. Then

we would write the model as E[ | ] = E[ =0| ] + 1+ 2 or, equivalently, as

E[  −  =0| ] = 1+ 2

which is referred to as a semiparametric marginal structural mean model because, unlike the marginal structural models

described in Chapter 12, leaves the mean counterfactual outcomes under no treatment E[ =0| ] completely unspeci-
fied.

To estimate the parameters of this semiparametric marginal structural model in the absence of censoring, we first

create a pseudo-population with IP weights ( ) =  (| )  (|). In this pseudo-population there is only
confounding by  and therefore the semiparametric marginal structural model is a structural nested model whose para-

meters are estimated by g-estimation with  substituted by  and each individual’s contribution weighted by ( ).

Therefore, in settings without time-varying treatments, structural nested models are identical to semiparametric mar-

ginal structural models that leave the mean counterfactual outcomes under no treatment unspecified. Because marginal

structural mean models include more parameters than structural nested mean models, the latter may be more robust to

model misspecification.

Consider the special case of a semiparametric marginal structural mean model within levels of all variables in

, rather than only a subset  so that ( ) are equal to 1 for all subjects. That is, let us consider the model

E[ − =0|] = 1+2, which we refer to as a faux semiparametric marginal structural model. Under conditional

exchangeability, this model is the structural nested mean model we use in this chapter.

standardization can be used to adjust for these two biases. G-estimation, on

the other hand, can only be used to adjust for confounding, not selection bias.

Thus, when using g-estimation, one first needs to adjust for selection biasTechnically, IP weighting is not nec-

essary for g-estimation with a non-

time-varying treatment that does

not affect any variable in , and

an outcome measured at a single

time point. That is, if as we have

been assuming   q () |, we
can apply g-estimation to the un-

censored subjects without having to

IP weight. In contrast, IP weight-

ing must be used whenever the un-

censored and the censored are not

exchangeable conditional on .

due to censoring by IP weighting. In practice, this means that we first estimate

nonstabilized IP weights for censoring to create a pseudo-population in which

nobody is censored, and then apply g-estimation to the pseudo-population.

In our smoking cessation example, we will use the nonstabilized IP weights

 = 1Pr [ = 0|] that we estimated in Chapter 12. Again we assume
that the vector of variables  is sufficient to adjust for both confounding and

selection bias.

All the g-estimation analyses described in this chapter incorporate IP weights

to adjust for the potential selection bias due to censoring. Under the assump-

tion that the censored and the uncensored are exchangeable conditional on the

measured covariates , the structural nested mean model E[  −  =0| =

 ] = 1+ 2, when applied to the pseudo-population created by the IP

weights  , is really a structural model in the absence of censoring:

E[ =0 −  =0=0| =  ] = 1+ 2

For simplicity, we will omit the superscript  = 0 hereafter in this chapter.
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In this chapter we will use g-estimation of a structural nested mean modelUnlike IP weighting, g-estimation

cannot be easily extended to es-

timate the parameters of struc-

tural logistic models for dichoto-

mous outcomes. See Technical

Point 14.1.

to estimate the effect of the dichotomous treatment “smoking cessation”, but

structural nested models can also be used for continuous treatment variables–

like “change in smoking intensity” (see Chapter 12). For continuous variables,

the model needs to specify the dose-response curve for the effect of treatment

 on the mean outcome  . For example, E[  −  =0| =  ] = 1 +

2
2 + 3+ 4

2, or E[  −  =0| =  ] could be a smooth function,

e.g., splines, of  and .

We now turn our attention to the concept of rank preservation, which will

help us describe g-estimation of structural nested models.

14.4 Rank preservation

In our smoking cessation example, all individuals can be ranked according to

the value of their observed outcome  . Subject 2352 is ranked first with weightcode: Program 14.1
gain of 485 kg, subject 6928 is ranked second with weight gain 475 kg... and

subject 23321 is ranked last with weight gain of −413 kg. Similarly we could
think of ranking all individuals according to the value of their counterfactual

outcome under treatment  =1 if the value of  =1 were known for all indi-

viduals rather than only for those who were actually treated. But suppose for

a second that we could rank everybody according to  =1 and also according

to  =0. We would then have two lists of individuals ordered from larger to

smaller value of the corresponding counterfactual outcome. If both lists are in

identical order we say that there is rank preservation.

When the effect of treatment  on the outcome  is exactly the same,

on the additive scale, for all individuals in the study population, we say that

additive rank preservation holds. For example, if smoking cessation increases

everybody’s body weight by exactly 3 kg, then the ranking of individuals ac-

cording to  =0 would be equal to the ranking according to  =1, except

that in the latter list all individuals will be 3 kg heavier. A particular case of

additive rank preservation occurs when the sharp null hypothesis is true (see

Chapter 1), i.e., if treatment has no effect on the outcomes of any individual in

the study population. For the purposes of structural nested mean models we

will care about additive rank preservation within levels of . This conditional

additive rank preservation holds if the effect of treatment  on the outcome 

Figure 14.1

is exactly the same for all individuals with the same values of .

An example of an (additive conditional) rank-preserving structural model

is

 
 −  =0

 = 1+ 2 for all subjects 

where 1 + 2 is the constant causal effect for all individuals with covariate

values  = . That is, for every individual  with  = , the value of  =1


is equal to  =0
 + 1 + 2. A subject’s counterfactual outcome under no

treatment  =0
 is shifted by 1+2 to obtain the value of her counterfactual

outcome under treatment.

Figure 14.1 shows an example of additive rank preservation within the

stratum  = . The bell-shaped curves represent the distribution of the coun-

terfactual outcomes  =0 (left curve) and  =1 (right curve). The two dots

in the upper part of the figure represent the values of the two counterfactual

outcomes for subject , and the two dots in the lower part represent the val-

ues of the two counterfactual outcomes for subject . The arrows represent the
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shifts from  =0 to  =1, which are equal to 1+2 for all individuals in this

stratum. Figure 14.2 shows an example of rank preservation within another

Figure 14.2

stratum  = 0. The distribution of the counterfactual outcomes is different
from than in stratum  = . For example, the mean of  =0 in Figure 14.1 is

to the left of the mean of  =0 in Figure 14.2, which means that, on average,

individuals in stratum  =  have a smaller weight gain under no smoking

cessation than individuals in stratum  = 0. The shift from  =0 to  =1 is

1 + 2
0 for all individuals with  = 0, as shown for individuals  and .

For most treatments and outcomes, the individual causal effect is not ex-

pected to be constant–not even approximately constant–across individuals

with the same covariate values, and thus (additive conditional) rank preserva-

tion is scientifically implausible. In our example we do not expect that smoking

cessation affects equally the body weight of all individuals with the same val-

ues of . Some people are–genetically or otherwise–more susceptible to the

effects of smoking cessation than others, even within levels of the covariates

. The individual causal effect of smoking cessation will vary across people:

Figure 14.3

after quitting smoking some individuals will gain a lot of weight, some will

gain little, and others may even lose some weight. Reality may look more like

the situation depicted in Figure 14.3, in which the shift from  =0 to  =1

varies across individuals with the same covariate values, and even ranks are

not preserved since the outcome for individual  is less than that for individual

 when  = 0 but not when  = 1.

Because of the implausibility of rank preservation, one should not generally

use methods for causal inference that rely on it. In fact none of the methods

we consider in this book require rank preservation. For example, the marginal

structural mean models from Chapter 12 are models for average causal effects,

not for individual causal effects, and thus they do not assume rank preserva-

tion. The estimated average causal effect of smoking cessation on weight gain

was 35 kg (95% CI: 25, 45). This average effect is agnostic as to whetherA structural nested mean model is

well defined in the absence of rank

preservation. For example, one

could propose a structural nested

mean model for the setting depicted

in Figure 14.3 to estimate the av-

erage causal effect within strata of

. Such average causal effect will

generally differ from the individual-

level causal effects.

rank preservation of individual causal effects holds. Similarly, the structural

nested mean model in the previous section made no assumptions about rank

preservation.

The additive rank-preserving model in this section makes a much stronger

assumption than non-rank-preserving mean models: the assumption of con-

stant treatment effect for all individuals with the same value of . There is no

reason why we would want to use such an unrealistic rank-preserving model

in practice. And yet we use it in the next section to introduce g-estimation

because g-estimation is easier to understand for rank-preserving models, and

because the g-estimation procedure is actually the same for rank-preserving

and non-rank-preserving models. Note that the (conditional additive) rank-

preserving structural model is a structural mean model–the mean of the indi-

vidual shifts from  =0 to  =1 is equal to each of the individual shifts within

levels of .

14.5 G-estimation

This section links the material in the previous three sections. Suppose the

goal is estimating the parameters of the structural nested mean model E[ −
 =0| = ] = 1. For simplicity, we first consider a model with a single

parameter 1. Because the model lacks product terms 2, we are effectively

assuming that the average causal effect of smoking cessation is constant across
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strata of , i.e., no effect modification by .

We also assume that the additive rank-preserving model  
 − =0

 = 1

is correctly specified for all individuals . Then the individual causal effect 1
is equal to the average causal effect 1 in which we are interested. We write

the rank-preserving model as  − =0 = 1, without a subscript  to index

individuals because the model is the same for all individuals. For reasons that

will soon be obvious, we write the model in the equivalent form

 =0 =   − 1

The first step in g-estimation is linking the model to the observed data. To

do so, remember that an individual’s observed outcome  is, by consistency,

the counterfactual outcome  =1 if the person received treatment  = 1 or

the counterfactual outcome  =0 if the person received no treatment  = 0.

Therefore, if we replace the fixed value  in the structural model by each

individual’s value –which will be 1 for some and 0 for others–then we can

replace the counterfactual outcome   by the individual’s observed outcome

  =  . The rank-preserving structural model then implies an equation

in which each individuals’s counterfactual outcome  =0 is a function of his

observed data on treatment and outcome and the unknown parameter 1:

 =0 =  − 1

If this model were correct and we knew the value of 1 then we could calcu-

late the counterfactual outcome under no treatment  =0 for each individual

in the study population. But we don’t know 1. Estimating it is precisely the

goal of our analysis.

Let us play a game. Suppose a friend of yours knows the value of 1 but he

only tells you that 1 is one of the following: 
† = −20, † = 0, or † = 10.

He challenges you: “Can you identify the true value 1 among the 3 possible

values †?” You accept the challenge. For each individual, you compute

(†) =  − †

for each of the three possible values †. The newly created variables (−20),
(0), and (10) are candidate counterfactuals. Only one of them is the coun-

terfactual outcome  =0. More specifically, (†) =  =0 if † = 1. In

this game, choosing the correct value of 1 is equivalent to choosing which

one of the three candidate counterfactuals (†) is the true counterfactual
 =0 = (1). Can you think of a way to choose the right (

†)?
Remember from Section 14.2 that the assumption of conditional exchange-

ability can be expressed as a logistic model for treatment given the counterfac-

tual outcome and the covariates . When conditional exchangeability holds,

the parameter 1 for the counterfactual outcome should be zero. So we haveRosenbaum (1987) proposed a ver-

sion of this procedure for non-time-

varying treatments.

a simple method to choose the true counterfactual out of the three variables

(†). We fit three separate logistic models

logit Pr[ = 1|(†) ] = 0 + 1(
†) + 2

one per each of the three candidates (†). The candidate (†) with 1 = 0

is the counterfactual  =0, and the corresponding † is the true value 1. ForImportant: G-estimation does not

test whether conditional exchange-

ability holds; it assumes that condi-

tional exchangeability holds.

example, suppose that († = 10) is unassociated with treatment  given

the covariates . Then our estimate ̂1 of 1 is 10. We are done. That was

g-estimation.
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Technical Point 14.1

Multiplicative structural nested mean models. In the text we only consider additive structural nested mean models.

When the outcome variable  can only take positive values, a multiplicative structural nested mean model is preferred.

An example of an multiplicative structural nested mean model is

log

µ
E[ | =  ]

E[ =0| =  ]

¶
= 1+ 2

which can be fit by g-estimation with (†) defined to be  exp
h
−†1− 

†
2
i
.

The above multiplicative model can also be used for binary (0, 1) outcome variables as long as the probability of

 = 1 is small in all strata of . Otherwise, the model might predict probabilities greater than 1. If the probability is

not small, one can consider a structural nested logistic model for a dichotomous outcome  such as

logit Pr[  = 1| = ]− logit Pr[ =0 = 1| =  ] = 1+ 2

Unfortunately, structural nested logistic models do not generalize easily to time-varying treatments and their parameters

cannot be estimated using the g-estimation algorithm described in the text. For details, see Tchetgen Tchetgen and

Rotnitzky (2011).

In practice, however, we need to g-estimate the parameter 1 in the absence

of a friend who knows the right answer and likes to play games. Therefore we

will need to search over all possible values † until we find the one that results
in an (†) with 1 = 0. Because not all possible values can be tested–there
is an infinite number of values † in any given interval–we can conduct a fine
search over many pre-specified † values (e.g., from −20 to 20 by increments
of 001). The finer the search, the closer to the true estimate ̂1 we will get,

but also the greater the computational demands.code: Program 14.2

In our smoking cessation example, we first computed each individual’s value

of the 31 candidates (20), (21), (22), ...(49), and (50) for values

† between 20 and 50 by increments of 01. We then fit 31 separate logistic
models for the probability of smoking cessation. These models were exactly

like the one used to estimate the denominator of the IP weights in Chapter

12, except that we added to each model one of the 31 candidates (†).
The parameter estimate ̂1 for (

†) was closest to zero for values (34)
and (35). A finer search found that the minimum value of ̂1 (which was

essentially zero) was for (3446). Thus, our g-estimate ̂1 of the average

causal effect 1 = 1 of smoking cessation on weight gain is 34 kg.

To compute a 95% confidence interval around our g-estimate of 34, we usedWe calculated the P-value from

a Wald test. Any other valid

test may be used. For exam-

ple, we could have used a Score

test, which simplifies the calcula-

tions (it doesn’t require fitting mul-

tiple models) and, in large samples,

is equivalent to a Wald test.

the P-value for a test of 1 = 0 in the logistic models fit above. As expected,

the P-value was 1–it was actually 0998–for † = 3446, which is the value
† that results in a candidate (†) with a parameter estimate ̂1 = 0. Of

the 31 logistic models that we fit for † values between 20 and 50, the P-value
was greater than 005 in all models with (†) based on † values between
approximately 25 and 45. That is, the test did not reject the null hypothesis

at the 5% level for the subset of † values between 25 and 45. By inverting
the test results, we concluded that the limits of the 95% confidence interval

around 34 are 25 and 45.

More generally, the 95% confidence interval for a g-estimate is determined

by finding the set of values of † that result in a P-value 005 when testing for
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Fine Point 14.2

Sensitivity analysis for unmeasured confounding. G-estimation relies on the fact that 1 = 0 if conditional

exchangeability given  holds. Now consider a setting in which conditional exchangeability does not hold. For example,

suppose that the probability of quitting smoking  is lower for individuals whose spouse is a smoker, and that the

spouse’s smoking status is associated with important determinants of weight gain  not included in . That is,

there is unmeasured confounding by spouse’s smoking status. Because now the variables in  are insufficient to achieve

exchangeability of the treated and the untreated, the treatment  and the counterfactual  =0 are associated conditional

on . That is, 1 6= 0 and we cannot apply g-estimation as described in the main text.
But g-estimation does not require that 1 = 0. Suppose that, because of unmeasured confounding by the spouse’s

smoking status, 1 is expected to be 01 rather than 0. Then we can apply g-estimation as described in the text

except that we will test whether 1 = 01 rather than whether 1 = 0. G-estimation does not require that conditional

exchangeability given  holds, but that the magnitude of nonexchangeability–the value of 1–is known. This property

of g-estimation can be used to conduct sensitivity analyses for unmeasured confounding.

If we believe that  may not sufficiently adjust for confounding, then we can repeat our g-estimation analysis under

different scenarios of unmeasured confounding, represented by a range of vales of 1, and plot the effect estimates under

each of them. Such plot shows how sensitive our effect estimate is to unmeasured confounding of different direction

and magnitude. One practical problem for this approach is how to quantify the unmeasured confounding on the 1
scale, e.g., is 01 a lot of unmeasured confounding? Robins, Rotnitzky, and Scharfstein (1999) provide technical details

on sensitivity analysis for unmeasured confounding using g-estimation.

1 = 0. The 95% confidence interval is obtained by inversion of the statistical

test for 1 = 0, with the limits of the 95% confidence interval being the limits

of the set of values † with P-value 005. In our example, the statistical test
was based on a robust variance estimator because of the use of IP weighting toIn the presence of censoring, the fit

of the logistic models is necessar-

ily restricted to uncensored individ-

uals ( = 0), and the contribution

of each individual is weighted by

the estimate of his/her IP weight

 . See Technical Point 14.2.

adjust for censoring. Therefore our 95% confidence interval is conservative in

large samples, i.e., it will trap the true value at least 95% of the time. In large

samples, bootstrapping would result in a non-conservative, and thus possibly

narrower, 95% confidence interval for the g-estimate.

Back to non-rank-preserving models. The g-estimation algorithm (i.e., the

computer code implementing the procedure) for 1 produces a consistent es-

timate of the parameter 1 of the mean model, assuming the mean model is

correctly specified (that is, if the average treatment effect is equal in all levels

of ). This is true regardless of whether the individual treatment effect is

constant, that is, regardless of whether the conditional additive rank preserva-

tion holds. In other words, the validity of the g-estimation algorithm does not

actually require that (1) =  =0 for all subjects, where 1 is the parameter

value in the mean model. Rather, the algorithm only requires that (1) and

 =0 have the same conditional mean given .

14.6 Structural nested models with two or more parameters

We have so far considered a structural nested mean model with a single pa-

rameter 1. The lack of product terms 2 imply that we believe that the

average causal effect of smoking cessation does not vary across strata of . The

structural nested model will be misspecified–and thus our causal inferences

will be wrong–if there is indeed effect modification by some components  of

 but we failed to add a product term 2 . This is in contrast with marginal
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structural models, which are not misspecified if we fail to add terms 2 and

3 even if there is effect modification by  . Marginal structural models thatAs discussed in Chapter 12, a de-

sirable property of marginal struc-

tural models is null preservation:

when the null hypothesis of no aver-

age causal effect is true, the model

is never misspecified. Structural

nested models preserve the null too.

In contrast, although the g-formula

preserves the null for time-fixed

treatments, it loses this property in

the time-varying setting (see Part

III).

do not condition on  estimate the average causal effect in the population,

whereas those that condition on  estimate the average causal effect within

levels of  . Structural nested models estimate, by definition, the average causal

effect within levels of the confounders , not the average causal effect in the

population. Omitting product terms in structural nested models when there

is effect modification will generally lead to bias due to model misspecification.

Fortunately, the g-estimation procedure described in the previous section

can be generalized to models with product terms. For example, suppose we be-

lieve that the average causal effect of smoking cessation depends on the baseline

level of smoking intensity  . We may then consider the structural nested mean

model E[  −  =0| =  ] = 1 + 2 and, for g-estimation purposes,

the corresponding rank-preserving model  
 −  =0

 = 1+ 2 . Because

the structural model has two parameters, 1 and 2, we also need to include

two parameters in the IP weighted logistic model for Pr[ = 1|(†) ]. For
example, we could fit the logistic model

logit Pr[ = 1|(†) ] = 0 + 1(
†) + 2(

†) + 3

and find the combination of values of 
†
1 and 

†
2 that result in a (

†) that is
independent of treatment  conditional on the covariates . That is, we need

to search the combination of values 
†
1 and 

†
2 that make both 1 and 2 equal

to zero.

Because the model has two parameters, the search must be conducted over

a two-dimensional space. Thus a systematic, brute force search will be more

involved than that described in the previous section. Less computationally in-

tensive approaches, known as directed search methods, for approximate search-The Nelder-Mead Simplex method

is an example of a directed search

method.

ing are available in statistical software. For linear mean models like the one

discussed here–but not, for example, for certain survival analysis models–

the estimate can be directly calculated using a formula, i.e., the estimator has

closed form and a search over the possible values of the parameters is not

necessary (see Technical Point 14.2 for details). In our smoking cessation ex-code: Program 14.3

ample, the g-estimates were ̂1 = 286 and ̂2 = 003. The corresponding 95%

confidence intervals can be calculated by, for example, bootstrapping.

In the more general case, we would consider a model that allows the averageYou may argue that structural

nested models with multiple para-

meters may not be necessary. If

all variables  are discrete and the

study population is large, one could

fit separate 1-parameter models to

each subset of the population de-

fined by a combination of values of

. True for fixed treatments , but

not true for the time-varying treat-

ments we will discuss in Part III.

causal effect of smoking cessation to vary across all strata of the variables

in . For dichotomous variables, the corresponding rank-preserving model

 
 −  =0

 = 1 + 
P

=1 2 has  + 1 parameters 1 212, where

2 is the parameter corresponding to the product term  and  represents

one of the  components of . The average causal effect in the entire study

population can then be calculated as 1 +
1


P
=1 2 , where  is the

number of study subjects. In practice, structural nested models with multiple

parameters have rarely been used.

In fact, structural nested models of any type have rarely been used, partly

because of the lack of user-friendly software and partly because the extension

of these models to survival analysis require some additional considerations

(see Chapter 17). We now review two methods that are arguably the most

commonly used approaches to adjust for confounding: outcome regression and

propensity scores.
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Technical Point 14.2

G-estimation of structural nested mean models. Consider the structural nested model E[  −  =0| =  ] =

1. A consistent estimate of 1 can be obtained by g-estimation under the assumptions described in the text.

Specifically, our estimate of 1 is the value of (
†) that minimizes the association between (†) and . When we

base our g-estimate on the score test (see, for example, Casella and Berger 2002), this procedure is equivalent to finding

the parameter value † that solves the estimating equation

X
=1

I [ = 0]

 (

†) ( − E [|]) = 0

where the indicator I [ = 0] takes value 1 for subject  if  = 0 and takes value 0 otherwise, and the IP weight 



and the expectation E [|] = Pr [ = 1|] are replaced by their estimates. E [|] can be estimated from a logistic
model for treatment conditional on the covariates  in which subject  contribution is weighted by 

 if  = 0 and

it is zero otherwise. [Because  and  are observed on all subjects, we could also estimate E [|] by an unweighted
logistic regression of  on  using all subjects.]

The solution to the equation has a closed form and can therefore be calculated directly, i.e., no search over the

parameter space is required. Specifically, using the fact that (
†) =  − † we obtain that ̂1 equals

X
=1

I [ = 0]

  ( − E [|]) 

X
=1

I [ = 0]

  ( − E [|])

If  is D-dimensional, we multiply the left-hand side of the estimating equation by a D-dimensional vector function of .

The choice of the function affects the statistical efficiency of the estimator, but not its consistency. That is, although

all choices of the function will result in valid confidence intervals, the length of the confidence interval will depend on

the function. Robins (1994) provided a formal description of structural nested mean models, and derived the function

that minimizes confidence interval length.

A natural question is whether we can further increase efficiency by replacing (
†) by a nonlinear function, such

as
£
(

†)
¤3
, in the above estimating equation and still preserve consistency of the estimate. The answer is no if

we assumed a non-rank-preserving model because, under a non-rank-preserving model,  =0 q | does not imply

(1) q |, but only mean independence conditional on , i.e., E [(1)|] = E [(1)|]. The answer is
yes if we assumed a (conditional linear) rank-preserving model because under a rank-preserving model  =0 q |
implies (1)q|. It is this latter fact, and not rank preservation per se, that allows nonlinear functions of (

†)
to be used in our estimating equation.

The estimator of  is consistent only if the models used to estimate E [|] and Pr [ = 1|] are both correct.
We can construct a more robust estimator by replacing (†) by (†)−E £(†)|¤ in the estimating equation, and
then estimating the latter conditional expectation by fitting an unweighted linear model for E

£
(†)|¤ = E £ =0|¤

among the uncensored subjects. If this model is correct then the estimate of  solving the modified estimating equation

remains consistent even if both the above models for E [|] and Pr [ = 1|] are incorrect. Thus we obtain a
consistent estimator of  if either (i) the model for E

£
(†)|¤ or (ii) both models for E [|] and Pr [ = 1|] are

correct, without knowing which of (i) or (ii) is correct. We refer to such an estimator as being doubly robust. Robins

(2000) provided a closed-form doubly robust estimator for the linear structural nested mean model.
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Chapter 15
OUTCOME REGRESSION AND PROPENSITY SCORES

Outcome regression and various versions of propensity score analyses are the most commonly used parametric

methods for causal inference. You may rightly wonder why it took us so long to include a chapter that discusses

these methods. So far we have described IP weighting, the g-formula, and g-estimation–the g-methods. Presenting

the most commonly used methods after the least commonly used ones seems an odd choice on our part. Why

didn’t we start with the simpler and widely used methods based on outcome regression and propensity scores?

Because these methods do not work in general.

More precisely, the simpler outcome regression and propensity score methods–as described in a zillion pub-

lications that this chapter cannot possibly summarize–work fine in simpler settings, but these methods are not

designed to handle the complexities associated with causal inference for time-varying treatments. In Part III we

will again discuss IP weighting, the g-formula, and g-estimation but will say less about conventional outcome

regression and propensity score methods. This chapter is devoted to causal methods that are commonly used but

have limited applicability for complex longitudinal data.

15.1 Outcome regression

In the last three chapters we have described IP weighting, standardization,

and g-estimation to estimate the average causal effect of smoking cessation

(the treatment)  on weight gain (the outcome)  . We also described how toReminder: We defined the aver-

age causal effect as E[ =1=0]−
E[ =0=0]. We assumed that

exchangeability of the treated and

the untreated was achieved condi-

tional on the  variables sex, age,

race, education, intensity and dura-

tion of smoking, physical activity in

daily life, recreational exercise, and

weight.

estimate the average causal effect within subsets of the population, either by

restricting the analysis to the subset of interest or by adding product terms in

marginal structural models (Chapter 12) and structural nested models (Chap-

ter 14). Take structural nested models. These models include parameters for

the product terms between treatment  and the variables , but no parame-

ters for the variables  themselves. This is an attractive property of structural

nested models because we are interested in the causal effect of  on  within

levels of  but not in the (noncausal) relation between  and  . A method–

g-estimation of structural nested models–that is agnostic about the functional

form of the - relation is protected from bias due to misspecifying this rela-

tion.

On the other hand, if we were willing to specify the - association within

levels of , we would consider the structural modelIn a slightly humorous vein, we refer

to this structural model as a faux

marginal structural model : it has

the form of a marginal structural

model but IP weighting is not re-

quired. The stabilized IP weights

() are all equal to 1 because

the model is conditional on the en-

tire vector  rather than on a sub-

set  of .

E[ =0|] = 0 + 1+ 2+ 3

where 2 and 3 are vector parameters. The average causal effects of smoking

cessation  on weight gain  in each stratum of  are a function of 1 and 2,

the mean counterfactual outcomes under no treatment in each stratum of 

are a function of 0 and 3. The parameter 3 is usually referred as the main

effect of , but the use of the word effect is misleading because 3 may not

have an interpretation as the causal effect of  (there may be confounding for

). The parameter 3 simply quantifies how the mean of the counterfactual

 =0=0 varies as a function of , as we can see in our structural model. See
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Fine Point 15.1

Nuisance parameters. Suppose our goal is to estimate the causal parameters 1and 2. If we do so by fitting the

outcome regression model E[ =0|] = 0+1+2+3, our estimates of 1and 2 will in general be consistent

only if 0+3 correctly models the dependence of the mean E[
=0=0|] on . We refer to the parameters 0 and

3 as nuisance parameters because they are not our parameters of primary interest.

On the other hand, if we estimate 1and 2 by g-estimation of the structural nested model E[
=0− =0=0|] =

1+2, then our estimates of 1and 2 will in general be consistent only if the conditional probability of treatment

given  Pr[ = 1|] is correct. That is, the parameters of the treatment model such as logit Pr[ = 1|] = 0 +1

are now the nuisance parameters.

For example, bias would arise in the outcome regression model if a covariate  is model with a linear term 3

when it should actually be linear and quadratic 3+4
2. Structural nested models are not subject to misspecification

of an outcome regression model because the - relation is not specified in the structural model. However, bias would

arise when using g-estimation of structural nested models if the - relation is misspecified in the treatment model.

Symmetrically, outcome regression models are not subject to misspecification of a treatment model. For fixed treatments

that do not vary over time, deciding what method to use boils down to deciding which nuisance parameters–those in

the outcome model or in the treatment model–we believe can be more accurately estimated. A better alternative is to

use doubly-robust methods (see Technical Point 14.2).

Fine Point 15.1 for a discussion of parameters that, like 0 and 3, do not have

a causal interpretation.

The counterfactual mean outcomes if everybody in stratum  of  had been

treated and remained uncensored, E[ =1=0| = ], are equal to the corre-

sponding mean outcomes in the uncensored treated, E[ | = 1  = 0  = ],

under exchangeability, positivity, and well-defined interventions. And analo-

gously for the untreated. Therefore the parameters of the above structural

model can be estimated via ordinary least squares by fitting the outcome re-

gression model

E[ | = 0 ] = 0 + 1+ 2+ 3

as described in Section 13.2. Like stratification in Chapter 3, outcome regres-

sion adjusts for confounding by estimating the causal effect of treatment in

each stratum of . If the variables  are sufficient to adjust for confounding

(and selection bias) and the outcome model is correctly specified, no further

adjustment is needed.

In Section 13.2, outcome regression was an intermediate step towards theWhen outcome regression is an in-

termediate step to estimate the

mean of the counterfactual out-

comes, correct specification of the

dependence of  =0=0 on  is re-

quired. Therefore, the parameters

0 and 3 become necessary too.

0 and 3 would also become nec-

essary if we were interested in us-

ing our model estimates to estimate

the conditional (within levels of )

causal effect on the multiplicative

rather than additive scale.

estimation of a standardized outcome mean. Here, outcome regression is the

end of the procedure. Rather than standardizing the estimates of the condi-

tional means to estimate a marginal mean, we just compare the conditional

mean estimates. In Section 13.2, we fit a regression model with only one prod-

uct term in 2 (between  and smoking intensity). That is, a model in which

we a priori set most product terms equal to zero. Using the same model as in

Section 13.2, here we obtained the parameter estimates ̂1 = 26 and ̂2 = 005.

code: Program 15.1

As an example, the effect estimate bE[ | = 1  = 0 ]−bE[ | = 0  = 0 ]
was 28 (95% CI: 15, 41) for those smoking 5 cigarettes/day, and 44 (95%

CI: 28, 61) for 40 cigarettes/day. A common approach to outcome regression

is to assume that there is no effect modification by any variable in . Then

the model is fit without any product terms and ̂1 is an estimate of both the

conditional and marginal average causal effects of treatment. In our example,

a model without any product terms yielded the estimate 35 (95% CI: 26, 43)

kg.
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In this chapter we did not need to explain how to fit an outcome regression

model because we had already done it in Chapter 13 when estimating the

components of the g-formula. It is equally straightforward to use outcome

regression for discrete outcomes, e.g., for a dichotomous outcome  one could

fit a logistic model for Pr [ = 1| =  = 0 ].

15.2 Propensity scores

When using IP weighting (Chapter 12) and g-estimation (Chapter 14), we

estimated the probability of treatment given the covariates , Pr [ = 1|],
for each individual. Let us refer to this conditional probability as (). The

value of () is close to 0 for individuals who have a low probability of receiving

treatment and is close to 1 for those who have a high probability of receiving

treatment. That is, () measures the propensity of individuals to receive

treatment given the information available in the covariates . No wonder that

() is referred to as the propensity score.

In an ideal randomized trial in which half of the individuals are assigned

to treatment  = 1, the propensity score () = 05 for all individuals. Alsocode: Program 15.2
Here we only consider propensity

scores for dichotomous treatments.

Propensity score methods, other

than IP weighting and g-estimation

and other related doubly-robust es-

timators, are difficult to generalize

to non-dichotomous treatments.

note that () = 05 for any choice of . In contrast, in observational studies

some individuals may be more likely to receive treatment than others. Be-

cause treatment assignment is beyond the control of the investigators, the true

propensity score () is unknown, and therefore needs to be estimated from

the data.

In our example, we can estimate the propensity score () by fitting a

logistic model for the probability of quitting smoking  conditional on the

covariates . This is the same model that we used for IP weighting and g-

estimation. Under this model, individual 22941 was estimated to have the

lowest estimated propensity score (0053), and individual 24949 the highest

Figure 15.1

(0793). Figure 15.1 shows the distribution of the estimated propensity score

in quitters  = 1 (top) and nonquitters  = 0 (bottom). As expected, those

who quit smoking had, on average, a greater estimated probability of quitting

(0312) than those who did not quit (0245). If the distribution of () were

the same for the treated  = 1 and the untreated  = 0, then there would be

no confounding due to , i.e., there would be no open path from  to  on a

causal diagram.

Individuals with same propensity score () will generally have different

values of some covariates . For example, two individuals with () = 02

may differ with respect to smoking intensity and exercise, and yet they may

be equally likely to quit smoking given all the variables in . That is, both

individuals have the same conditional probability of ending up in the treated

group  = 1. If we consider all individuals with a given value of () in the

superpopulation, this group will include individuals with different values of 

(e.g., different values of smoking intensity and exercise), but the distribution

of  will be the same in the treated and the untreated, that is, q|(). WeIn the study population, due to

sampling variability, the propen-

sity score only approximately “bal-

ances” the covariates .

say the propensity score balances the covariates between the treated and the

untreated. Of course, the propensity score only balances the measured covari-

ates , which does not prevent residual confounding by unmeasured factors.

Randomization balances both the measured and the unmeasured covariates,

and thus it is the preferred method to eliminate confounding. See Technical

Point 15.1 for a formal definition of a balancing score.

Like all methods for causal inference that we have discussed, the use of
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Technical Point 15.1

Balancing scores and prognostic scores. As discussed in the text, the propensity score () balances the covariates

between the treated an the untreated. In fact, the propensity score () is the simplest example of a balancing score.

More generally, a balancing score () is any function of the covariates  such that q|(). That is, for each value
of the balancing score, the distribution of the covariates  is the same in the treated and the untreated. Rosenbaum and

Rubin (1983) proved that exchangeability and positivity based on the variables  implies exchangeability and positivity

based on a balancing score (). If it is sufficient to adjust for , then it is sufficient to adjust for a balancing score

(), including the propensity score (). Figure 15.2 depicts the propensity score for the setting represented in Figure

7.1: the () is an intermediate between  and  with a deterministic arrow from  to ().

An alternative to a balancing score () is a prognostic score (), i.e., a function of the covariates  such that

 =0q|(). Adjustment methods can be developed for both balancing scores and prognostic scores, but methods for
prognostic scores require stronger assumptions and cannot be readily extended to time-varying treatments. See Hansen

(2008) and Abadie et al (2013) for a discussion of prognostic scores.

propensity score methods requires the identifying conditions of exchangeabil-

ity and positivity (besides, of course, well-defined interventions). The use of

propensity score methods is justifed by the following key result: Exchangeabil-

ity of the treated and the untreated within levels of the covariates  implies

exchangeability within levels of the propensity score (). That is, conditionalIf  is sufficient to adjust for con-

founding and selection bias, then

() is sufficient too. This result

was derived by Rosenbaum and Ru-

bin in a seminal paper published in

1983.

exchangeability  
`

| implies  
`

|(). Further, positivity within lev-
els of the propensity score ()–which means that no individual has a propen-

sity score equal to either 1 or 0–holds if and only if positivity within levels

of the covariates , as defined in Chapter 2, holds. Under exchangeability

 
`

|() and positivity within levels of (), the propensity score can also
be used to estimate causal effects using stratification (including outcome re-

gression), standardization, and matching. We now describe how to implement

each of these methods.

15.3 Propensity stratification and standardization

The average causal effect among individuals with a particular value  of the

propensity score (), i.e., E[ =1=0|() = ] − E[ =0=0|() = ] is

equal to E[ | = 1 () = ] − E[ | = 0 () = ] under exchangeability

and positivity. This conditional effect might be estimated by restricting the

L YAp(L)

Figure 15.2

analysis to individuals with the value  of the true propensity score. (In obser-

vational studies, we must use the value  of the estimated propensity score.)

However, the propensity score () is a continuous variable that can take any

value between 0 and 1. It is therefore unlikely that two individuals will have

exactly the same value . For example, only individual 1089 had an estimated

() of 06563, which means that we cannot estimate the causal effect among

individuals with () = 06563 by comparing the treated and the untreated

with that particular value.

One approach to deal with the continuous propensity score is to create

strata that contain individuals with similar, but not identical, values of ().

The deciles of the estimated () is a popular choice: individuals in the pop-

ulation are classified in 10 strata of approximately equal size, then the causal

effect is estimated in each of the strata. In our example, each decile containedcode: Program 15.3



Outcome regression and propensity scores 47

approximately 162 individuals. The effect of smoking cessation on weight gain

ranged across deciles from 00 to 66 kg, but the 95% confidence intervals

around these point estimates were wide.

We could have also obtained these effect estimates by fitting an outcome

regression model for E[ | = 0 ()] that included as covariates treatment
, 9 indicators for the deciles of the estimated () (one of the deciles is the

reference level and is already incorporated in the intercept of the model), and

9 product terms between  and the indicators. Most applications of outcome

regression with deciles of the estimated () do not include the product terms,

i.e., they assume no effect modification by (). In our example, a model

without product terms yields an effect estimate of 35 kg (95% CI: 26, 44).

See Fine Point 15.2 for more on effect modification by the propensity score.

Stratification on deciles or other functions of the propensity score raises a

potential problem: in general the distribution of the continuous () will differ

between the treated and the untreated within some strata (e.g., deciles). If, for

example, the average () were greater in the treated than in the untreated

in some strata, then the treated and the untreated might not be exchangeable

in those strata. This problem did not arise in previous chapters, when we

used functions of the propensity score to estimate the parameters of structural

models via IP weighting and g-estimation, because those methods used theCaution: the denominator of the

IP weights for a dichotomous treat-

ment  is not the propensity score

(), but a function of (). The

denominator is () for the treated

( = 1) and 1 − () for the un-

treated ( = 0).

numerical value of the estimated probability rather than a categorical transfor-

mation like deciles. Similarly, the problem does not arise when using outcome

regression for E[ | = 0 ()] with the estimated propensity score () as
a continuous covariate rather than as a set of indicators. When we used this

latter approach in our example the effect estimate was 36 (95% CI: 27, 45)

kg. The validity of our inference depends on the correct specification of the

relationship between () and the mean outcome  (which we assumed to be

linear). However, because the propensity score is a one-dimensional summary

of the multi-dimensional , it is easy to guard against misspecification of thisThe one-dimensional nature of the

propensity score is not a panacea

from a modeling standpoint. We

still need to estimate the propensity

score from a model that regresses

treatment on a high-dimensional .

The same applies to IP weighting

and g-estimation.

relationship by fitting flexible models, e.g., cubic splines rather than a single

linear term for the propensity score. Note that IP weighting and g-estimation

were agnostic about the relationship between propensity score and outcome.

When our parametric assumptions for E[ | = 0 ()] are correct,

plus exchangeability and positivity hold, the model estimates the average

causal effects within all levels  of the propensity score E[ =1=0|() =
]−E[ =0=0|() = ]. If we were interested in the average causal effect in

the entire study population E[ =1 = 0]−E[ =0 = 0], we would standard-

ize the conditional means E[ | = 0 ()] by using the distribution of the
propensity score. The procedure is the same one described in Chapter 13 forcode: Program 15.4
continuous variables, except that we replace the variables  by the estimated

(). In our example, the standardized effect estimate was 36 (95% CI: 26,

45) kg.

15.4 Propensity matching

The process of matching on the propensity score () is analogous to match-

ing on a single continuous variable , a procedure described in Chapter 4.

There are many forms of propensity matching. All of them attempt to formPropensity matching is conducted

in such a way that the matched

population ends up having the ()

distribution of the untreated, the

entire population, or any other ar-

bitrary distribution.

a matched population in which the treated and the untreated are exchange-

able because they have the same distribution of (). For example, one can

match the untreated to the treated: each treated individual is paired with one
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(or more) untreated individuals with the same propensity score value. The

subset of the original population comprised by the treated-untreated pairs (or

sets) is the matched population. Under exchangeability and positivity given

(), association measures in the matched population are consistent estimates

of effect measures, e.g., the associational risk ratio in the matched populationA drawback of matching used to be

that nobody knew how to compute

the variance of the effect estimate.

That is no longer the case thanks

to the work of Abadie and Imbens

(2006).

consistently estimates the causal risk ratio in the matched population.

Again, it is unlikely that two individuals will have exactly the same values

of the propensity score (). In our example, propensity score matching will be

carried out by identifying, for each treated individual, one (or more) untreated

individuals with a close value of (). A common approach is to match treated

individuals with a value  of the estimated () with untreated individuals who

have a value  ± 005, or some other small difference. For example, treated
subject 1089 (estimated () of 06563) might be matched with untreated

subject 1088 (estimated () of 06579). There are numerous ways of defining

closeness, and a detailed description of these definitions is beyond the scope of

this book.

Defining closeness in propensity matching entails a bias-variance trade-

off. If the closeness criteria are too loose, individuals with relatively different

values of () will be matched to each other, the distribution of () will

differ between the treated and the untreated in the matched population, and

exchangeability will not hold. On the other hand, if the closeness criteria are

too tight and many individuals are excluded by the matching procedure, there

will be approximate exchangeability but the effect estimate may have wider

95% confidence intervals.

The definition of closeness is also related to that of positivity. In our smok-

ing cessation example, the distributions of the estimated () in the treatedRemember: positivity is now de-

fined within levels of the propensity

score, i.e., Pr [ = | () = ] 

0 for all  such that Pr [ () = ]

is nonzero.

and the untreated overlapped throughout most of the range (see Figure 15.1).

Only 2 treated individuals (001% of the study population) had values greater

than those of any untreated individual. When using outcome regression on the

estimated () in the previous section, we effectively assumed that the lack

of untreated individuals with high () estimates was due to chance–random

nonpositivity–and thus included all subjects in the analysis. In contrast,

most propensity matched analyses would not consider those 2 treated individ-

uals close enough to any of the untreated individuals, and would exclude them.

Matching does not distinguish between random and structural nonpositivity.

The above discussion illustrates how the matched population may be very

different from the target (super)population. In theory, propensity matching

can be used to estimate the causal effect in a well characterized target pop-

ulation. For example, when matching each treated individual with one or

more untreated individuals and excluding the unmatched untreated, one is es-

timating the effect in the treated (see Fine Point 15.2). In practice, however,

propensity matching may yield an effect estimate in a hard-to-describe subset

of the study population. For example, under a given definition of closeness,

some treated individuals cannot be matched with any untreated individuals

and thus they are excluded from the analysis. As a result, the effect estimate

corresponds to a subset of the population that is defined by the values of the

estimated propensity score that have successful matches.

That propensity matching forces investigators to restrict the analysis to

treatment groups with overlapping distributions of the estimated propensity

score is often presented as a strength of the method. One surely would not want

to have biased estimates because of violations of positivity, right? However,

leaving aside issues related to random variability (see above), there is a price

to be paid for restrictions based on the propensity score. Suppose that, after
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Fine Point 15.2

Effect modification and the propensity score. A reason why matched and unmatched estimates may differ is effect

modification. As an example, consider the common setting in which the number of untreated individuals is much

larger than the number of treated individuals. Propensity matching often results in almost all treated individuals being

matched and many untreated individuals being unmatched and therefore excluded from the analysis. When this occurs,

the distribution of causal effect modifiers in the matched population will resemble that in the treated. Therefore, the

effect in the matched population will be closer to the effect in the treated than to the effect that would have been

estimated by methods that use data from the entire population. See Technical Point 4.1 for alternative ways to estimate

the effect of treatment in the treated via IP weighting and standardization.

Effect modification across propensity strata may be interpreted as evidence that decision makers know what they

are doing, e.g. that doctors tend to treat patients who are more likely to benefit from treatment (Kurth et al 2006).

However, the presence of effect modification by () may complicate the interpretation of the estimates. Consider a

situation with qualitative effect modification: “Doctor, according to our study, this drug is beneficial for patients who

have a propensity score between 011 and 093 when they arrive at your office, but it may kill those with propensity

scores below 011,” or “Ms. Minister, let’s apply this educational intervention to children with propensity scores below

057 only.” The above statements are of little policy relevance because, as discussed in the main text, they are not

expressed in terms of the measured variables .

Finally, besides effect modification, there are other reasons why matched estimates may differ from the overall effect

estimate: violations of positivity in the non-matched, an unmeasured confounder that is more/less prevalent (or that is

better/worse measured) in the matched population than in the unmatched population, etc. As discussed for individuals

variables  in Chapter 4, remember that effect modification might be explained by differences in residual confounding

across propensity strata.

inspecting Figure 15.1, we conclude that we can only estimate the effect of

smoking cessation for individuals with an estimated propensity score less than

067. Who are these people? It is unclear because individuals do not come with

a propensity score tattooed on their forehead. Because the matched population

is not well characterized, it is hard to assess the transportability of the effect

estimate to other populations.

When positivity concerns arise, restriction based on real-world variablesEven if every subject came with

her propensity score tattooed on

her forehead, the population could

still be ill-characterized because the

same propensity score value may

mean different things in different

settings.

(e.g., age, number of cigarettes) leads to a more natural characterization of the

causal effect. In our smoking cessation example, the two treated individuals

with estimated ()  067 were the only ones in the study who were over

age 50 and had smoked for less than 10 years. We could exclude them and

explain that our effect estimate only applies to smokers under age 50 and to

smokers 50 and over who had smoked for at least 10 years. This way of defining

the target population is more natural than defining it as those with estimated

()  067.

Using propensity scores to detect the overlapping range of the treated and

the untreated may be useful, but simply restricting the study population to

that range is a lazy way to ensure positivity. The automatic positivity ensured

by propensity matching needs to be weighed against the difficulty of assessing

transportability when restriction is solely based on the value of the estimated

propensity scores.
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15.5 Propensity models, structural models, predictive models

In Part II of this book we have described two different types of models for causal

inference: propensity models and structural models. Let us now compare them.

Propensity models are models for the probability of treatment  given

the variables  used to try to achieve conditional exchangeability. We have

used propensity models for matching and stratification in this chapter, for IPFor non-time-varying dichotomous

treatments, IP weighting and g-

estimation are based on models for

treatment which are precisely the

same propensity models discussed

in this chapter.

weighting in Chapter 12, and for g-estimation in Chapter 14. The parameters

of propensity models are nuisance parameters (see Fine Point 15.1) without a

causal interpretation because a variable  and treatment  may be associated

for many reasons–not only because the variable  causes . For example,

the association between  and  can be interpreted as the effect of  on 

under Figure 7.1, but not under Figure 7.2. Yet propensity models are useful

for causal inference, often as the basis of the estimation of the parameters of

structural models, as we have described in this and previous chapters.

Structural models describe the relation between the treatment  and some

component of the distribution (e.g., the mean) of the counterfactual outcome

 , either marginally or within levels of the variables . For continuous treat-

ments, a structural model is often referred to as a dose-response model. The

parameters for treatment in structural models are not nuisance parameters:

they have a direct causal interpretation as outcome differences under differ-

ent treatment values . We have described two classes of structural models:

marginal structural models and structural nested models. Marginal structural

models include parameters for treatment, for the variables  that may be ef-

fect modifiers, and for product terms between treatment and variables  . The

choice of  reflects only the investigator’s substantive interest in effect mod-

ification (see Section 12.5). If no covariates  are included, then the model

is truly marginal. If all variables  are included as possible effect modifiers,

then the marginal structural model becomes a faux marginal structural model.Refer back to Fine Point 14.1 for a

discussion of the relation between

structural nested models and faux

semiparametric marginal structural

models, and other subtleties.

Structural nested models include parameters for treatment and for product

terms between treatment  and all variables in  that are effect modifiers.

We have presented outcome regression as a method to estimate the para-

meters of faux marginal structural models for causal inference. However, out-

come regression is also widely used for purely predictive, as opposed to causal,

purposes. For example, online retailers use sophisticated outcome regression

models to predict which customers are more likely to purchase their products.

The goal is not to determine whether your age, sex, income, geographic origin,

and previous purchases have a causal effect on your current purchase. Rather,

the goal is to identify those customers who are more likely to make a purchase

so that specific marketing programs can be targeted to them. It is all about

association, not causation. Similarly, doctors use algorithms based on outcomeIn a purely predictive study, Face-

book Likes were found to predict

sexual orientation, ethnicity, reli-

gion, political views, and person-

ality traits (Kosinski et al, 2013).

Low intelligence was predicted by,

among other things, a “Harley

Davidson” Like.

Remember: This is all about pre-

diction. The authors do not suggest

that these associations are causal,

and neither do we.

regression to identify patients at high risk of developing a serious disease or

dying. The parameters of these predictive models do not necessarily have any

causal interpretation and all covariates in the model have the same status, i.e.,

there are no treatment variable  and variables .

The dual use of outcome regression in both causal inference method and

in prediction has led to many misunderstandings. One of the most impor-

tant misunderstandings has to do with variable selection procedures. When

the interest lies exclusively on outcome prediction, investigators want to select

any variables that, when included as covariates in the model, improve its pre-

dictive ability. Many well-known variable selection procedures–e.g., forward

selection, backward elimination, stepwise selection–and more recent develop-

ments in machine learning are used to enhance prediction. These are powerful
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tools for investigators who are interested in prediction, especially when dealing

with very high-dimensional data.

Unfortunately, statistics courses and textbooks have not always made a

sharp difference between causal inference and prediction. As a result, these

variable selection procedures for predictive models have often been applied to

causal inference models. A possible result of this mismatch is the inclusion of

superfluous–or even harmful–covariates in propensity models and structural

models. Specifically, the application of predictive algorithms to causal inference

models may result in inflated variances, as discussed in Chapter REF.

One of the reasons for variance inflation is the widespread, but mistaken,

belief that propensity models should predict treatment  as well as possible.It is not uncommon for propen-

sity analyses to report measures of

predictive power like Mallows’s Cp.

The relevance of these measures for

causal inference is questionable.

Propensity models do not need to predict treatment very well. They just need

to include the variables  that guarantee exchangeability. Covariates that

are strongly associated with treatment, but are not necessary to guarantee

exchangeability, do not help reduce bias. If these covariates were included in

, adjustment can actually result in estimates with very large variances.

Consider the following example. Suppose all individuals in certain study

attend either hospital Aceso or hospital Panacea. Doctors in hospital Aceso

give treatment  = 1 to 99% of the individuals, and those in hospital Panacea

give  = 0 to 99% of the individuals. Suppose the variable Hospital has

no effect on the outcome (except through its effect on treatment ) and is

therefore not necessary to achieve conditional exchangeability. Say we decide

to add Hospital as a covariate in our propensity model anyway. The propensity

score () in the target population is at least 099 for everybody in the study,

but by chance we may end up with a study population in which everybody

in hospital Aceso has  = 1 or everybody in hospital Panacea has  = 0 for

some strata defined by . That is, our effect estimate may have a near-infinite

variance without any reduction in confounding. That treatment is now very

well predicted is irrelevant for causal inference purposes.

Besides variance inflation, a predictive attitude towards variable selection

for causal inference models–both propensity models and outcome regression

models–may also result in self-inflicted bias. For example, the inclusion of

covariates strongly associated with treatment in propensity models may result

in small-sample bias and the inclusion of colliders as covariates may result

in systematic bias. Colliders, however, may be effective covariates for purely

predictive purposes. We will return to these issues in Chapter REF.

All causal inference methods based on models–propensity models and

structural models–require no misspecification of the functional form of the

covariates. To reduce the possibility of model misspecification, we use flexible

specifications, e.g., cubic splines rather than linear terms. In addition, these

causal inference methods require the conditions of exchangeability, positivity,

and well-defined interventions for unbiased causal inferences. In the next chap-

ter we describe a very different type of causal inference method that does not

require exchangeability as we know it.
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Chapter 16
INSTRUMENTAL VARIABLE ESTIMATION

The causal inference methods described so far in this book rely on a key untestable assumption: all variables needed

to adjust for confounding and selection bias have been identified and correctly measured. If this assumption is

incorrect–and it will always be to a certain extent–there will be residual bias in our causal estimates.

It turns out that there exist other methods that can validly estimate causal effects under an alternative set

of assumptions that do not require measuring all adjustment factors. Instrumental variable estimation is one of

those methods. Economists and other social scientists reading this book can breathe now. We are finally going to

describe a very common method in their fields, a method that is unlike any other we have discussed so far.

16.1 The three instrumental conditions

The causal diagram in Figure 16.1 depicts the structure of a double-blind

randomized trial. In this trial,  is the randomization assignment indicator

(1: treatment, 0: placebo),  is an indicator for receiving treatment (1: yes,

0: no),  is the outcome, and  represents all factors (some unmeasured) that

affect both the outcome and the decision to adhere to the assigned treatment.

Suppose we want to consistently estimate the average causal effect of  on

 . Whether we use IP weighting, standardization, g-estimation, stratification,

or matching, we need to correctly measure, and adjust for, variables that block

the backdoor path ←  →  , i.e., we need to ensure conditional exchange-

Z YA

U

Figure 16.1 ability of the treated and the untreated. Unfortunately, all these methods will

result in biased effect estimates if some of the necessary variables are unmea-

sured, imperfectly measured, or misspecified in the model.

Instrumental variable (IV) methods are different: they may be used to

identify the average causal effect of  on  in this randomized trial, even if we

did not measure the variables normally required to adjust for the confounding

caused by  . To perform their magic, IV methods need an instrumental vari-

able , or and instrument. We say that a variable  is an instrument when it

meets the three instrumental conditions

(i)  has a nonzero causal effect on treatment 

(ii)  affects the outcome  only through its potential effect on 

(iii)  and  do not share causes

See Technical Point 16.1 for a more rigorous definition of the three instru-

mental conditions.

In the double-blind randomized trial described above, the randomization

indicator  is an instrument. Condition (i) is met because trial participants are

more likely to receive treatment if they were assigned to treatment, conditionCondition (ii) would not be guar-

anteed if, for example, partici-

pants were inadvertently unblinded

by side effects of treatment.

(ii) is expected by the double-blind design, and condition (iii) is expected by

the random assignment of .

More generally, condition (i) can be replaced by: (i)  and treatment have

an instrument  as a common cause. Figure 16.2 depicts  under this version

UZ YA

U

Z

Figure 16.2

of condition (i). We then refer to  as the unmeasured causal instrument and

to  as the measured surrogate or proxy instrument. Both causal and proxy
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Technical Point 16.1

The instrumental conditions, formally. Instrumental condition (i) is sometimes referred to as the relevance condition.

For causal instruments, it is the condition of nonzero average causal effect of  on , i.e., E
£
=1

¤− E £=0
¤ 6= 0

for a dichotomous instrument . For proxy instruments, it also requires nonzero average causal effect of  on .

Instrumental condition (ii) is commonly known as the exclusion restriction. This condition states that there is no

direct effect of  on  , i.e., for all subjects , 

 = 

0
 =  

 for all  0 and for all . It is often stated as
 q |.

Instrumental condition (iii) is an exchangeability condition. Mean exchangeability–E [ | = 1] = E [ | = 0]
for all  in the case of a dichotomous instrument–is sufficient for most results presented in this chapter. However, in

randomized trials, stronger versions of exchangeability are expected to hold (Robins 1989, Manski 1990, Balke and Pearl

1997), including:

• marginal exchangeability, or   q  for all 

• full exchangeability, or © =1  =0 =1 =0
ªq  for a dichotomous treatment .

See Technical Point 2.1 for additional discussion on different types of exchangeability.

instruments can be used for IV estimation, with some caveats described in

Section 16.4. In both figures 16.1 and 16.2,  and  are associated, and thus

condition (i) is often expressed as the presence of a - association.

In previous chapters we have estimated the effect of smoking cessation on

weight change using various causal inference methods applied to observational

data. To estimate this effect using IV methods, we need an instrument .

Since there is no randomization indicator in an observational study, consider

the following candidate for an instrument: the price of cigarettes. It can be

reasonably argued that this variable meets the three instrumental conditions

if (i) cigarette price affects the decision to quit smoking, (ii) cigarette price

affects weight change only through its effect on smoking cessation, and (iii)

no common causes of cigarette price and weight change exist. Fine Point 16.1

reviews some proposed instruments in observational studies.

To fix ideas, let us propose an instrument  that takes value 1 when the

average price of a pack of cigarettes in the U.S. state where the individual wasCondition (i) is met if the candi-

date instrument  “price in state

of birth” is associated with smok-

ing cessation  through “price in

place of residence”.

born was greater than $150, and takes value 0 otherwise. Unfortunately, we

cannot determine whether our variable  is actually an instrument. Of the

three instrumental conditions, only condition (i) is empirically verifiable. To

verify this condition we need to confirm that the proposed instrument  and the

treatment  are associated, i.e., that Pr [ = 1| = 1] − Pr [ = 1| = 0] 
0. The probability of quitting smoking is 258% among those with  = 1

and 195% among those with  = 0; the risk difference Pr [ = 1| = 1] −
Pr [ = 1| = 0] is therefore 6%. When, as in this case,  and  are weakly

associated,  is often referred as a weak instrument (more on weak instruments

in Section 16.5).

On the other hand, conditions (ii) and (iii) cannot be empirically verified.

To verify condition (ii), we would need to prove that  can only cause the

outcome  through the treatment . We cannot prove it by conditioning on

, which is a collider on the pathway  ←−  →  ←−  →  , because

that would induce an association between  and  even if condition (ii) held

true. (See Chapter REF for additional discussion on direct effects.) And we

cannot, of course, prove that condition (iii) holds because we can never rule out
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Fine Point 16.1

Candidate instruments in observational studies. Many variables have been proposed as instruments in observational

studies and it is not possible to review all of them here. Three commonly used categories of candidate instruments are

• Genetic factors: The proposed instrument is a genetic variant  that is associated with treatment  and that,

supposedly, is only related with the outcome  through . For example, when estimating the effects of alcohol

intake on the risk of coronary heart disease,  can be a polymorphism associated with alcohol metabolism (say,

ALDH2 in Asian populations). Causal inference from observational data via IV estimation using genetic variants is

part of the framework known as Mendelian randomization (Katan 1986, Davey Smith and Ebrahim 2004, Didelez

and Sheehan 2007, VanderWeele et al. 2014).

• Preference: The proposed instrument  is a measure of the physician’s (or a care provider’s) preference for one

treatment over the other. The idea is that a physician’s preference influences the prescribed treatment  without

having a direct effect on the outcome  . For example, when estimating the effect of prescribing COX-2 selective

versus non-selective nonsteroidal anti-inflammatory drugs on gastrointestinal bleeding,  can be the physician’s

prescribing preference for drug class (COX-2 selective or non-selective). Because  is unmeasured, investigators

replace it in the analysis by a (measured) surrogate instrument , such as “last prescription issued by the physician

before current prescription” (Korn and Baumrind 1998, Earle et al. 2001, Brookhart and Schneeweiss 2007).

• Access: The proposed instrument  is a measure of access to the treatment. The idea is that access impacts the
use of treatment  but does not directly affect the outcome  . For example, physical distance or travel time to

a facility has been proposed as an instrument for treatments available at such facilities (McClellan et al. 1994,

Card 1995, Baiocchi et al. 2010). Another example: calendar period has been proposed as an instrument for a

treatment whose accessibility varies over time (Hoover et al. 1994, Detels et al. 1998). In the main text we use

“price of the treatment”, another measure of access, as a candidate instrument.

confounding for the effect of any variable. We can only assume that conditions

(ii) and (iii) hold. IV estimation, like all methods we have studied so far, isAssumptions (ii) and (iii) can some-

times be empirically falsified by

using data on instrument, treat-

ment, and outcome. However, fal-

sification tests only reject the as-

sumptions under extreme violations

(Bonet 2001, Glymour et al. 2012).

based on untestable assumptions.

In observational studies we cannot prove that our proposed instrument 

is truly an instrument. We refer to  as a proposed or candidate instrument

because we can never guarantee that the structures represented in Figures 16.1

and 16.2 are the ones that actually occur. The best we can do is to use subject-

matter knowledge to build a case for why the proposed instrument  may be

reasonably assumed to meet conditions (ii) and (iii); this is similar to how

we use subject-matter knowledge to justify the identifying assumptions of the

methods described in previous chapters.

But let us provisionally assume that  is an instrument. Now what? Can

we now see the magic of IV estimation in action? Can we consistently estimate

the average causal effect of  on  without having to identify and measure

the confounders? Sadly, the answer is no. An instrument does not allow us

to obtain a point estimate for the average causal effect of smoking cessation

 on weight change  , but only an estimate of its upper and lower bounds.

Typically, the bounds are very wide and include the null value (see Technical

Point 16.2). Also, there is a 95% confidence interval around each bound.

In our example, these bounds are not very helpful. They would only confirm

what we already knew: smoking cessation can result in weight gain, weight loss,

or no weight change. Unfortunately, that is all an instrument can generally

offer unless one is willing to make additional unverifiable assumptions. Sections
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Technical Point 16.2

Bounds: Partial identification of causal effects. For a dichotomous outcome  , the average causal effect

Pr
£
 =1 = 1

¤ − Pr £ =0 = 1
¤
can take values between −1 (if all individuals develop the outcome unless they were

treated) and 1 (if no individuals develop the outcome unless treated). The bounds of the average causal effect are

(−1 1). The distance between these bounds can be cut in half by using the data: because for each individual we know
the value of either her counterfactual outcome  =1 (if the individual was actually treated) or  =0 (if the individual

was actually untreated), we can compute the causal effect after assigning the most extreme values possible to each

individual’s unknown counterfactual outcome. This will result in bounds of the average causal effect that are narrower

but still include the null value 0. For a continuous outcome  , deriving bounds for the average causal effect requires

the specification of the minimum and maximum values for the outcome; the width of the bounds will vary depending

on the chosen values.

The bounds for Pr
£
 =1 = 1

¤ − Pr £ =0 = 1
¤
can be further narrowed when instrumental condition (ii) and

marginal exchangeability (iii) hold, as shown by Robins (1989) and Manski (1990). The width of these bounds, Pr[ =

1| = 0]+Pr[ = 0| = 1], is narrower than that of the bounds identified from the data alone, and may decrease further
when condition (iii) of marginal exchangeability is replaced by full exchangeability (Balke and Pearl 1994). Richardson

and Robins (2010, 2014) derived the Balke-Pearl bounds using weaker exchangeability conditions, and also narrower

bounds using alternative conditions. See also Richardson, Evans, and Robins (2011).

Unfortunately, these partial identification methods (i.e., methods for bounding the effect) are often relatively

uninformative because the bounds are too wide. There is a way to decrease the width of the bounds: making parametric

assumptions about the form of the effect of  on  . Under sufficiently strong assumptions described in Section 16.2,

the upper and lower bounds converge into a single number and the average causal effect is point identified.

16.3 and 16.4 review some additional conditions under which IV estimation can

be used to obtain a point estimate for the average causal effect. Before that,

we review the methods to obtain such point estimate.

16.2 The usual IV estimand

When a dichotomous variable  is an instrument, i.e., it meets the three in-

strumental conditions (i)-(iii), and an additional condition (iv) described in the

next section holds, then the average causal effect of treatment on the additiveWe will focus on dichotomous in-

struments, which are the common-

est ones. For a continuous instru-

ment , the usual IV estimand is
()

()
, where  means co-

variance.

scale E
£
 =1

¤− E £ =0
¤
is equal to

E [ | = 1]− E [ | = 0]
E [| = 1]− E [| = 0] 

which is the usual IV estimand for a dichotomous instrument. (Note E [| = 1] =
Pr [ = 1| = 1] for a dichotomous treatment). Technical Point 16.3 provides
a proof of this result in terms of an additive structural mean model, but you

might want to wait until the next section before reading it.

To intuitively understand the usual IV estimand, consider again the ran-

domized trial from the previous section. The numerator of the IV estimand–In randomized experiments, the IV

estimator is the ratio of two effects

of : the effect of  on  and the

effect of  on . Each of these ef-

fects can be consistently estimated

without adjustment because  is

randomly assigned.

the average causal effect of  on –is the intention to treat effect, and the

denominator–the average causal effect of  on –is a measure of compliance

with the assigned treatment. When there is perfect compliance, the denomi-

nator is equal to 1, and the effect of  on  equals the effect of  on  . As

compliance worsens, the denominator starts to get closer to 0, and the effect

of  on  becomes greater that the effect of  on  . The greater the rate of
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noncompliance, the greater the difference between the effect on  on –the

IV estimand–and the effect of  on  .

The IV estimand bypasses the need to adjust for the confounders by in-

flating the intention-to-treat effect in the numerator. The magnitude of the

inflation increases as compliance decreases, i.e., as the - risk difference gets

closer to zero. The same rationale applies to instruments used in observational

studies, except that the denominator of the IV estimator may equal either the

causal effect of  on  (Figure 16.1), or the non-causal - association due

to their common cause  (Figure 16.2).

The standard IV estimator is the ratio of the estimates of the numeratorAlso known as the Wald estimator

(Wald 1940). and the denominator of the usual IV estimand. In our smoking cessation

example with a dichotomous instrument  (1: state with high cigarette price,

0: otherwise), the numerator estimate bE [ | = 1]−bE [ | = 0] equals 2686−
2536 = 01503 and the denominator bE [| = 1]− bE [| = 0] equals 02578−
01951 = 00627. Therefore, the usual IV estimate is the ratio 0150300627 =Code: Program 16.1

For simplicity, we exclude individu-

als with missing outcome or instru-

ment. In practice, we could use IP

weighting to adjust for possible se-

lection bias before using IV estima-

tion.

24 kg. Under the three instrumental conditions (i)-(iii) plus condition (iv) from

this section, this estimate is the average causal effect of smoking cessation on

weight gain in the population.

We estimated the numerator and denominator of the IV estimand by simply

calculating the four sample averages bE [| = 1], bE [| = 0], bE [ | = 1], andbE [ | = 0]. Equivalently, we could have fit two linear models to estimate
the differences in the denominator and the numerator. The model for the

denominator would be E [|] = 0 + 1, and the model for the numerator

E [ |] = 0 + 1. Linear models are also used in the most frequently used

method to calculate the standard IV estimator: the two-stage estimator (also

known as the two-stage-least-squares estimator). The procedure is as follows.

First, fit the first-stage treatment model E [|] = 0+1, and generate the

predicted values bE [|] for each subject. Second, fit the second-stage outcome
model E [ |] = 0 + 1bE [|]. The parameter estimate b1 is numerically
equivalent to the standard IV estimate. Indeed in our example, the two-stageCode: Program 16.2

A variation is to also include in

the second-stage model the resid-

ual − bE [|] estimated from the
first-stage model. This procedure

may reduce the variance if the resid-

uals are associated with  , but its

validity requires additional homo-

geneity assumptions.

estimate was again 24 kg.

The 24 point estimate has a very large 95% confidence interval: −365
to 413. This is expected for our proposed instrument because the confidence

interval incorporates the uncertainty in estimating both the mean of the out-

come from the second-stage model and the predicted values from the first-stage

model. Because the - association is weak, there is much uncertainty in the

first-stage model. In fact, a commonly used rule of thumb is to declare an

instrument as weak if the F-statistic from the first-stage model is less than

10 (it was 08 in our example). We will revisit the problems raised by weak

instruments in Section 16.5.

The use of models for IV estimation facilitates the handling of continu-

ous treatments, the introduction of covariates (more in Section 16.5), and theAlso, models can be used to esti-

mate causal risk ratios and odds ra-

tios when the outcome is dichoto-

mous. See Palmer at al. (2011) for

a review.

consideration of multiple instruments simultaneously. However, the two-stage

estimator and its variations forces investigators to make strong parametric as-

sumptions. Some of these assumptions can be avoided by using additive or

multiplicative structural mean models, like the ones described in Technical

Points 16.3 and 16.4, for IV estimation. The parameters of structural mean

models can be estimated via g-estimation. The trade-offs involved in the choiceCode: Program 16.3
between two-stage linear models and structural mean models are similar to

those involved in the choice between outcome regression and structural nested

models for non-IV estimation (see Chapters 14 and 15).

Anyway, none of the above approaches is valid unless a fourth identifying
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Technical Point 16.3

Additive structural mean models and IV estimation. Consider the following saturated, additive structural mean

model for a dichotomous treatment 

E
£
 =1 −  =0| = 1 ¤ = 0 + 1,

which can also be written as E
£
 −  =0|¤ =  (0 + 1). The parameter 0 is the average causal effect of

treatment among the treated subjects with  = 0, and 0 + 1 is the average causal effect of treatment among the

treated subjects with  = 1. Thus 1 quantifies additive effect modification by .

If we a priori assume that there is no additive effect modification by , then 1 = 0 and 0 is exactly the usual IV

estimand (Robins 1994). That is, the usual IV estimand is the parameter of an additive structural mean model for the

effect of treatment on the treated under no effect modification by .

The proof is simple. When  is an instrument, condition (ii) holds, which implies E
£
 =0| = 1¤ =

E
£
 =0| = 0¤. Using the structural model notation, this conditional mean independence can be rewritten as

E [ − (0 + 1) | = 1] = E [ −0| = 0]. Solving the above equation with 1 = 0 we have

0 =
E [ | = 1]− E [ | = 0]
E [| = 1]− E [| = 0]

So 0 = E
£
 =1 −  =0| = 1  = 

¤
= E

£
 =1 −  =0| = 1¤ for any  is the average causal effect of

treatment in the treated, but not generally the average causal effect in the study population E
£
 =1

¤− E £ =0
¤
. In

order to conclude that 0 = E
£
 =1

¤ − E £ =0
¤
and thus that E

£
 =1

¤ − E £ =0
¤
is the usual IV estimand, we

must assume that the effects of treatment in the treated and in the untreated are identical.

condition holds in addition to the three instrumental conditions. We now turn

our attention to this fourth condition.

16.3 A fourth identifying condition: homogeneity

The three instrumental conditions (i)-(iii) are insufficient to identify the aver-

age causal effect of treatment. A fourth condition, effect homogeneity (iv), is

needed.

There are different versions of the condition (iv) of homogeneity. The most

extreme version requires the effect of treatment  on outcome  to be constant

across individuals. In our example, this constant effect condition would hold if

smoking cessation made every individual in the population gain (or lose) the

same amount of body weight, say, exactly 24 kg. A constant effect is equiv-

alent to additive rank preservation which, as we discussed in Section 14.4, is

scientifically implausible for most treatments and outcomes–and impossibleYet additive rank preservation

was implicitly assumed in many

early IV analyses using the two-

stage estimator. Rank preserva-

tion is stronger than and implies

monotonicity, a condition that we

will define in the next section.

for dichotomous outcomes, except under the sharp null or universal harm (or

benefit). In our example, we expect that, after quitting smoking, some indi-

viduals will gain a lot of weight, some will gain little, and others may even lose

some weight. Therefore we are not generally willing to accept the homogeneity

assumption of constant effect as a reasonable condition (iv).

Fortunately, there is a less extreme homogeneity condition (iv) under which

the IV estimand still is the average causal effect of treatment  on  . For di-

chotomous instrument  and treatment , this weaker homogeneity condition

requires that the average causal effect on the additive scale is equal by levels of
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Multiplicative structural mean models and IV estimation. Consider the following saturated, multiplicative (log-

linear) structural mean model for a dichotomous treatment 

E
£
 =1| = 1 ¤

E [ =0| = 1 ] = exp (0 + 1) ,

which can also be written as E [ |] = E
£
 =0|¤ exp [ (0 + 1)]. For a dichotomous  , exp (0) is the

causal risk ratio in the treated subjects with  = 0 and exp (0 + 1) is the causal risk ratio in the treated with  = 1.

Thus 1 quantifies multiplicative effect modification by . If we a priori assume that 1 = 0, then the average causal

effect on the multiplicative (risk ratio) scale is E
£
 =1

¤
E

£
 =0

¤
= exp (0), and the average causal effect on the

additive (risk difference) scale is

E
£
 =1

¤− E £ =0
¤
= E [ | = 0] (1− E []) [exp (0)− 1] + E [ | = 1]E [] [1− exp (0)]

The proof, which relies on the instrumental conditions, can be found in Robins (1989) and Hernán and Robins (2006b).

That is, if we assume a multiplicative structural mean model with no multiplicative effect modification by  in

the treated and in the untreated, then the average causal effect E [ (1)]− E [ (0)] remains identified, but no longer
equals the usual IV estimator. As a consequence, our estimate of E

£
 =1

¤ − E £ =0
¤
will depend on whether we

assume additive or multiplicative effect modification by . Unfortunately, it is not possible to determine which, if either,

assumption is true even if we had an infinite sample size (Robins 1994) because, when considering saturated additive or

multiplicative structural mean models, we have more unknown parameters to estimate than equations to estimate them

with. That is precisely why we need to make modelling assumptions such as homogeneity.

 in both the treated and in the untreated, i.e., E
£
 =1 −  =0| = 1  = 

¤
=

E
£
 =1 −  =0| = 0  = 

¤
for  = 0 1. This weaker additive homogene-

ity condition (iv) was the one used in the mathematical proof of Technical

Point 16.3. An alternative homogeneity condition on the multiplicative scale is

discussed in Technical Point 16.4. This multiplicative homogeneity condition

leads to an IV estimand that is different from the usual IV estimand.

The above homogeneity conditions are expressed in terms that are not natu-

rally intuitive. How can experts use their subject-matter knowledge to provide

arguments in support of a constant average causal effect within levels of the

proposed instrument  and the treatment  in any particular study? Because

it is difficult to find arguments for or against these homogeneity condition, it

would be desirable to find a more natural–even if still untestable–condition

in terms of effect modification by risk factors rather than by the proposed

instrument. Indeed it can be shown that additive effect modification by theSee Hernán and Robins (2006b) for

the proof of this sufficient condi-

tion.

unmeasured confounders  for the effect of treatment  on  is sufficient to

ensure that the additive homogeneity condition (iv) does not hold. That is,

if we suspect additive effect modification by  , it would not be reasonable

for us to believe that the usual IV estimand equals the average causal effect

E
£
 =1

¤ − E £ =0
¤
. This is problematic because, in practice, it is often

implausible to assume that none of the unmeasured confounders is an effect

modifier. For example, the magnitude of weight gain after smoking cessation

may vary with prior intensity of smoking, which may itself be a confounder for

the effect of smoking cessation on weight gain.

Because of the perceived implausibility of the homogeneity conditions, by

the early 1990s many researchers had despaired about the possibility of ever

using IV methods to validly estimate the average causal effect of treatment.
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In the meanwhile, other researchers sought and found an alternative condition

(iv) that does not require effect homogeneity and that, when combined with

the three instrumental conditions (i)-(iii), allows us to endow the usual IV

estimator with a causal interpretation. We review this condition (iv) in the

next section.

16.4 An alternative fourth condition: monotonicity

Consider again the double-blind randomized trial with randomization indicator

, treatment , and outcome  . For each individual in the trial, the coun-

terfactual variable =1 is the value of treatment–1 or 0–that an individual

would have taken if he had been assigned to receive treatment ( = 1). The

counterfactual variable =0 is analogously defined as the treatment value if

the individual had been assigned to receive no treatment ( = 0).

If we knew the values of the two counterfactual treatment variables =1

and =0 for each individual, we could classify all individuals in the study

population into four disjoint subpopulations:

Az

0

1

z=0 z=1

Always takers

Figure 16.3

Az

0

1

z=0 z=1

Never takers

Figure 16.4

1. Always-takers: Individuals who will always take treatment, regardless of

the treatment group they were assigned to. That is, individuals with

both =1 = 1 and =0 = 1.

2. Never-takers: Individuals who will never take treatment, regardless of

the treatment group they were assigned to. That is, individuals with

both =1 = 0 and =0 = 0.

3. Compliers or cooperative: Individuals who will take treatment when

assigned to treatment, and no treatment when assigned to no treatment.

That is, individuals with =1 = 1 and =0 = 0.

4. Defiers or contrarians: Individuals who will take no treatment when

assigned to treatment, and treatment when assigned to no treatment.

That is, individuals with =1 = 0 and =0 = 1.

Az

0

1

z=0 z=1

Compliers

Figure 16.5

Az

0

1

z=0 z=1

Defiers

Figure 16.6

Note that these subpopulations–often referred as compliance types or prin-

cipal strata–are not generally identified. If we observe that an individual was

assigned to  = 1 and took treatment  = 1, we do not know whether she is

a complier or an always-taker. If we observe that an individual was assigned

to  = 1 and took treatment  = 0, we do not know whether he is a defier or

a never-taker.

When no defiers exist, we say that there is monotonicity because the in-

strument  either does not change treatment –as shown in Figure 16.3 for

always-takers and Figure 16.4 for never-takers–or increases the value of treat-

ment –as shown in Figure 16.5 for compliers. For defiers, the instrument

 would decrease the value of treatment –as shown in Figure 16.6. More

generally, monotonicity holds when =1 ≥ =0 for all individuals.

Now let us replace any of the homogeneity conditions from the last section

by the monotonicity condition, which will become our new condition (iv). Then

the usual IV estimand does not equal the average causal effect of treatment

E
£
 =1

¤−E £ =0
¤
any more. Rather, under monotonicity (iv), the usual IV

estimand equals the average causal effect of treatment in the compliers, that

is

E
£
 =1 −  =0|=1 = 1 =0 = 0

¤
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Technical Point 16.5

Monotonicity and the effect in the compliers. Consider a dichotomous causal instrument , like the random-

ization indicator described in the text, and treatment . Imbens and Angrist (1994) proved that, because the

numerator of the usual IV estimand equals E
£
 =1 −  =0|=1 −=0 = 1

¤
Pr
£
=1 −=0 = 1

¤
and the de-

nominator equals Pr
£
=1 −=0 = 1

¤
, the usual IV estimand equals the average causal effect in the compliers

E
£
 =1 −  =0|=1 −=0 = 1

¤
. See also Angrist, Imbens, and Rubin (1996) and the associated discussion. A

proof follows.

For each individual , the effect of  on  is  =1
 − =0

 = 
=1=1

 − =0=0

 = 
=1

 − =0

 by (ii). Note that



 can be written as  =1

 
 +  =0

 (1−
 ), and therefore 

=1

 − 
=0

 =
¡
 =1
 −  =0



¢ ¡
=1
 −=0



¢
.

Therefore,

E [ | = 1]− E [ | = 0] = E £ =1 −  =0
¤

by (iii)

= E
h
 =1=1 −  =0=0

i
by consistency

= E
£¡
 =1 −  =0

¢ ¡
=1 −=0

¢¤
by the above equality

= E
£
 =1 −  =0|=1 −=0 = 1

¤
Pr
£
=1 −=0 = 1

¤−
E
£
 =1 −  =0|=1 −=0 = −1¤Pr £=1 −=0 = −1¤

= E
£
 =1 −  =0|=1 −=0 = 1

¤
Pr
£
=1 −=0 = 1

¤
by monotonicity (iv)

where the second to last equality expresses the effect as the weighted sum of the average causal effects in the two

subpopulations with =1 6= =0 (remember the that the effect is zero in the other two subpopulations).

Finally, the proportion of always-takers Pr
£
=0 = 1

¤
= Pr [ = 1| = 0], and the proportion of never-takers is

Pr
£
=1 = 0

¤
= Pr [ = 0| = 1] by (iii) and consistency. Since, under monotonicity (iv), there are no defiers, the

proportion of compliers Pr
£
=1 −=0 = 1

¤
is the remainder 1− Pr [ = 1| = 0]− Pr [ = 0| = 1] =

1− Pr [ = 1| = 0]− (1− Pr [ = 1| = 1]) = Pr [ = 1| = 1]− Pr [ = 1| = 0], which completes the proof.

The above proof only considers the setting depicted in Figure 16.1 in which the instrument  is causal. When, as

depicted in Figure 16.2, data on a surrogate –but not on the causal instrument –are available, Hernán and Robins

(2006b) proved that the average causal effect in the compliers (defined according to ) is also identified by the usual

IV estimator. Their proof depends critically on two assumptions: that  is independent of  and  given the causal

instrument  , and that  is binary. However, the independence assumption has often little substantive plausibility

unless  is continuous. A corollary is that the interpretation of the IV estimand as the effect in the compliers is

questionable in many applications of IV methods to observational data in which  is at best a surrogate for  .

This equality results from the fact that the intention-to-treat effect–the nu-Imbens and Angrist (1994) proved

that, under monotonicity, the usual

IV estimand is the effect in the

compliers.

merator of the usual IV estimand–is a weighted average of the intention-to-

treat effect in each of the four subpopulations defined by the principal strata.

To see this, note that assignment  has a null effect on the outcome  for

every always-taker because, by condition (ii), the effect of  is entirely medi-

ated through , and always-takers always take  = 1 regardless of the value of

 they are assigned to. An analogous argument for a null effect can be applied

to the never-takers, who always take  = 0. On the other hand, assignment 

generally has a non-null effect on  for every complier and defier. Therefore,Greenland (2000) and others re-

fer to the compliers as cooper-

ative people, and to defiers as

non-cooperative people. This ter-

minology prevents confusion with

the common concept of (observed)

compliance in randomized trials.

because no defiers exist and the intention-to-treat effect (the average causal

effect of  on  ) is zero in both the always-takers and the never-takers, the

numerator of the usual IV estimand is the effect of  on  in the only subpop-

ulation in which the instrument  may affect treatment : the compliers. The

denominator of the usual IV estimand then inflates the average causal effect of

 on  in the compliers to obtain the average causal effect of  on  in the

compliers. Technical Point 16.5 shows the proof.
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In observational studies, the usual IV estimand can also be used to estimate

the effect in the compliers in the absence of defiers. Technically, there are no

compliers or defiers in observational studies because the proposed instrument 

is not treatment assignment, but the term compliers refers to individuals with

(=1 = 1 =0 = 0) and the term defiers to those with (=1 = 0 =0 = 1).

In our smoking cessation example, the compliers are the individuals who wouldThe “compliers average causal ef-

fect” (CACE) is an example of

a local average treatment effect

(LATE) in a subpopulation, as op-

posed to the global average causal

effect in the entire population.

quit smoking in a state with high cigarette price and who would not quit

smoking in a state with low price. Conversely, the defiers are the individuals

who would not quit smoking in a state with high cigarette price and who

would quit smoking in a state with low price. If no defiers exist and the causal

instrument is dichotomous (see below and Technical Point 16.5), then 24 kg

is the IV effect estimate in the compliers.

The replacement of homogeneity by monotonicity was welcomed as the

salvation of IV methods. While homogeneity is often an implausible condition

(iv), monotonicity appeared credible in many settings. IV methods under

monotonicity (iv) cannot identify the average causal effect in the population,

only in the subpopulation of compliers, but that seemed a price worth paying

in order to keep powerful IV methods in our toolbox. However, the estimation

of the average causal effect of treatment in the compliers under monotonicity

(iv) has been criticized on several grounds.

First, the relevance of the effect in the compliers is questionable. The

subpopulation of compliers is not identified and, even though the proportion ofDeaton (2010) on the effect in the

compliers: "This goes beyond the

old story of looking for an object

where the light is strong enough to

see; rather, we have control over

the light, but choose to let it fall

where it may and then proclaim

that whatever it illuminates is what

we were looking for all along."

compliers in the population can be calculated (it is the denominator of the usual

IV estimand, see Technical Point 16.5), it varies from instrument to instrument

and from study to study. Therefore, causal inferences about the effect in the

compliers are difficult to use by decision makers. Should they prioritize the

administration of treatment  = 1 to the entire population because treatment

has been estimated to be beneficial among the compliers, which happen to be

6% of the population in our example but could be a smaller or larger group

in the real world? What if treatment is not as beneficial in always takers

and never takers, the majority of the population? Unfortunately, the decision

maker cannot know which individuals are members of the 6%. Rather thanA mitigating factor is that, un-

der strong assumptions, investiga-

tors can characterize the compliers

in terms of their distribution of the

observed variables (Angrist and Pis-

chke 2009, Baiocchi et al 2014).

arguing that the effect of the compliers is of primary interest, it may be more

honest to accept that interest in this estimand is not the result of its practical

relevance, but rather of the (often erroneous) perception that it is easy to

identify.

Second, monotonicity is not always a reasonable assumption in observa-

tional studies. The absence of defiers seems a safe assumption in randomized

trials: we do not expect that some individuals will provide consent for partici-

pation in a trial with the perverse intention to do exactly the opposite of what

they are asked to do. Further, monotonicity is ensured by design in trials inSommer and Zeger (1991), Imbens

and Rubin (1997), and Greenland

(2000) describe examples of guar-

anteed full compliance in the con-

trol group.

which those assigned to no treatment are prevented from receiving treatment,

i.e., there are no always-takers or defiers. However, monotonicity is harder to

justify for some instruments proposed in observational studies. Consider the

proposed instrument “physician preference” to estimate the treatment effect

in patients attending a clinic where two physicians with different preferences

work. The first physician usually prefers to prescribe the treatment, but she

makes exceptions for her patients with diabetes (because of some known con-

traindications). The second usually prefers to not prescribe the treatment, butThe example to the right was pro-

posed by Swanson and Hernán

(2014). Also Swanson et al (2015a)

showed empirically the existence in

defiers in an observational setting.

he makes exceptions for his more physically active patients (because of some

perceived benefits). Any patient who was both physically active and diabetic

would have been treated contrary to both of these physicians’ preferences, and

therefore would be labeled as a defier. That is, monotonicity is unlikely to
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hold when the decision to treat is the result of weighing multiple criteria or

dimensions of encouragement that include both risks and benefits. In these

settings, the proportion of defiers may not be negligible.

The situation is even more complicated for the proxy instruments  repre-

sented by Figure 16.2. If the causal instrument  is continuous (e.g., the true,

unmeasured physician’s preference), then the standard IV estimand using a di-

chotomous proxy instrument  (e.g., some measured surrogate of preference)

is not the effect in a particular subpopulation of compliers. Rather, the stan-

dard IV estimand identifies a weighted average of the effect in all individuals in

the population, with weights that make a meaningful interpretation difficult.

Therefore the interpretation of the IV estimand as the effect in the compliers

is questionable when the proposed dichotomous instrument is not causal , evenDefinition of monotonicity for a

continuous causal instrument  :

 is a non-decreasing function

of  on the support of  (An-

grist and Imbens 1995, Heckman

and Vytlacil 1999).

if monotonicity held for the continuous causal instrument  (see Technical

Point 16.5 for details).

Last, but definitely not least important, the partitioning of the popula-

tion into four subpopulations or principal strata may not be justifiable. In

many realistic settings, the subpopulation of compliers is an ill-defined sub-

set of the population. For example, using the proposed instrument “physician

preference” in settings with multiple physicians, all physicians with the same

preference level who could have seen a patient would have to treat the patient

in the exact same way. This is not only an unrealistic assumption, but alsoSwanson et al (2015) discuss the

difficulties to define monotonicity,

and introduce the concept of global

and local monotonicity in observa-

tional studies.

essentially impossible to define in many observational studies in which it is un-

known which physicians could have seen a patient. A stable partitioning into

compliers, defiers, always takers and never takers also requires deterministic

counterfactuals (not generally required to estimate average causal effects), no

interference (e.g., I may be an always-taker, but decide not to take treatment

when my friend doesn’t), absence of multiple versions of treatment and other

forms of heterogeneity (a complier in one setting, or for a particular instrument,

may not be a complier in another setting).

In summary, if the effect in the compliers is considered to be of interest,

relying on monotonicity (iv) seems a promising approach in double-blind ran-

domized trials with two arms and all-or-nothing compliance, especially when

one of the arms will exhibit full adherence by design. However, caution is

needed when using this approach in more complex settings and observational

studies, even if the proposed instrument were really an instrument.

16.5 The three instrumental conditions revisited

The previous sections have discussed the relative advantages and disadvantages

of choosing monotonicity or homogeneity as the condition (iv). Our discussion

implicitly assumed that the proposed instrument  was in fact an instrument.

However, in observational studies, the proposed instrument  will fail to be a

valid instrument if it violates either of the instrumental conditions (ii) or (iii),

and will be a weak instrument if it only barely meets condition (i). In all these

cases, the use of IV estimation may result in substantial bias even if condition

(iv) held perfectly. We now discuss each of the three instrumental conditions.

Condition (i), a - association, is empirically verifiable. Before declaring

 as their proposed instrument, investigators will check that  is associated

with treatment . However, when the - association is weak as in our

smoking cessation example, the instrument is said to be weak (see Fine Point

16.2). Three serious problems arise when the proposed instrument is weak.
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Fine Point 16.2

Defining weak instruments. There are two related, but different, definitions of weak instrument in the literature:

1. An instrument is weak if the true value of the - association–the denominator of the IV estimand–is “small.”

2. An instrument is weak if the F-statistic associated to the observed - association is “small,” typically meaning

less than 10.

In our smoking cessation example, the proposed instrument met both definitions: the risk difference was only 6% and

the F-statistic was a meager 08.

The first definition, based on the true value of the - association, reminds us that, even if we had an infinite

sample, the IV estimator greatly amplifies any biases in the numerator when using a proposed weak instrument (the

second problem of weak instruments in the main text). The second definition, based on the statistical properties of

the - association, reminds us that, even if we had a perfect instrument , the IV estimator can be biased in finite

samples (the third problem of weak instruments in the main text).

First, weak instruments yield effect estimates with wide 95% confidenceIn the context of linear models,

Martens et al (2006) showed that

instruments are guaranteed to be

weak in the presence of strong con-

founding, because a strong - as-

sociation leaves little residual vari-

ation for a strong - , or -,

association.

intervals, as in our smoking cessation example in Section 16.2. Second, weak

instruments amplify bias due to violations of conditions (ii) and (iii). A pro-

posed instrument  which is weakly associated with treatment  yields a

small denominator of the IV estimator. Therefore, violations of conditions (ii)

and (iii) that affect the numerator of the IV estimator (e.g., unmeasured con-

founding for the instrument, a direct effect of the instrument) will be greatly

exaggerated. In our example, any bias affecting the numerator of the IV esti-

mator would be multiplied by approximately 159 (100627). Third, even in

large samples, weak instruments introduce bias in the standard IV estimatorThis third problem is an example

of the finite sample bias discussed

in Chapter 18. Bound, Jaeger and

Baker (1995) documented this bias.

Their paper was followed by many

others that investigated the short-

comings of weak instruments.

and result in underestimation of its variance. That is, the effect estimate is

in the wrong place and the width of the confidence interval around it is too

narrow.

To understand the nature of this third problem, consider a randomly gen-

erated dichotomous variable . In an infinite population, the denominator

of the IV estimand will be exactly zero–there is a zero association between

treatment  and a completely random variable–and the IV estimate will be

undefined. However, in a study with a finite sample, chance will lead to an as-

sociation between the randomly generated  and the unmeasured confounders

–and therefore between  and treatment –that is weak but not exactly

zero. If we propose this random  as an instrument, the denominator of the

IV estimator will be very small rather than zero. As a result the numerator

will be incorrectly inflated, which will yield potentially very large bias. In fact,Code: Program 16.4
our proposed instrument “Price higher than $150” behaves like a randomly

generated variable. Had we decided to define  as price higher than $160,

$170, $180, or $190, the IV estimate would have been 413, −409, −211, or
−128 kg, respectively. In each case, the 95% confidence interval around the es-
timate was huge, though still an underestimate of the true uncertainty. Given

how much bias and variability weak instruments may create, a strong proposed

instrument that slightly violates conditions (ii) and (iii) may be preferable to

a less invalid, but weaker, proposed instrument.

Condition (ii), the absence of a direct effect of the instrument on the out-

come, cannot be verified from the data. A deviation from condition (ii) can

be represented by a direct arrow from the instrument  to the outcome  , as

Z YA

U

Figure 16.7
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shown in Figure 16.7. This direct effect of the instrument that is not mediated

through treatment  will contribute to the numerator of the IV estimator, and

Z YA

U

A*

Figure 16.8

it will be incorrectly inflated by the denominator as if it were part of the effect

of treatment . Condition (ii) may be violated when a continuous or multi-

valued treatment  is replaced in the analysis by a coarser (e.g., dichotomized)

Z YA

U1

U2

Figure 16.9

version ∗. Figure 16.8 shows that, even if condition (ii) holds for the original
treatment , it does not have to hold for its dichotomized version ∗, because
the path  →  →  represents a direct effect of the instrument  that is

not mediated through the treatment ∗ whose effect is being estimated in the
IV analysis. In practice, many treatments are replaced by coarser versions

for simplicity of interpretation. Coarsening of treatment is problematic for IV

estimation, but not necessarily for the methods discussed in previous chapters.

Condition (iii), no confounding for the effect of the instrument on the out-

come, is also unverifiable. Figure 16.9 shows confounding due to common

causes of the proposed instrument  and outcome  that are (1) and are

not (2) shared with treatment . In observational studies, the possibility of

confounding for the proposed instrument always exists (same as for any other

variable not under the investigator’s control). Confounding contributes to the

numerator of the IV estimator and is incorrectly inflated by the denominator

as if it were part of the effect of treatment  on the outcome  .

Sometimes condition (iii), and the other conditions too, can appear more

plausible within levels of the measured covariates. Rather than making the

unverifiable assumption that there is absolutely no confounding for the effect

of  on  , we might feel more comfortable making the unverifiable assumption

that there is no unmeasured confounding for the effect of  on  within levels of

the measured pre-instrument covariates  . We could then apply IV estimation

repeatedly in each stratum of  , and pool the IV effect estimates under the

assumption that the effect in the population (under homogeneity) or in the

compliers (under monotonicity) is constant within levels of  . Alternatively

we could include the variables  as covariates in the two-stage modeling. In

our example, this reduced the size of the effect estimate and increased its 95%Code: Program 16.5

Technical Point 16.6 describes ad-

ditive and multiplicative structural

mean models that allow for the

incorporation of baseline covari-

ates with fewer parametric assump-

tions than two-stage-least-squares

regression.

confidence interval.

Another frequent strategy to support condition (iii) is to check for bal-

anced distributions of the measured confounders across levels of the proposed

instrument . The idea is that, if the measured confounders are balanced, it

may be more likely that the unmeasured ones are balanced too. However, this

practice may offer a false sense of security: even small imbalances can lead

to counterintuitively large biases because of the bias amplification discussed

above.

A violation of condition (iii) may occur even in the absence of confound-

ing for the effect of  on  . The formal version of condition (iii) requires

exchangeability between individuals with different levels of the proposed in-

strument. Such exchangeability may be violated because of either confounding

(see above) or selection bias. A surprisingly common way in which selection

bias may be introduced in IV analyses is the exclusion of individuals with cer-

tain values of treatment . For example, if individuals in the population may

receive treatment levels  = 0,  = 1, or  = 2, an IV analysis restricted to

individuals with  = 1 or  = 2 may yield a non-null effect estimate even ifSwanson et al (2015b) describe this

selection bias in detail. the true causal effect is null. This exclusion does not introduce bias in non-IV

analyses whose goal is to estimate the effect of treatment  = 1 versus  = 2.

All the above problems related to conditions (i)-(iii) are exacerbated in IV

analyses that use simultaneously multiple proposed instruments in an attempt

to alleviate the weakness of a single proposed instrument. Unfortunately, the
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Technical Point 16.6

More general structural mean models. Consider an additive structural mean model that allows for continuous and/or

multivariate treatments , instruments , and pre-instrument covariates  . Such model assumes

E
£
 −  =0|  ¤ =  (  ∗)

where  (  ) is a known function,  is an unknown parameter vector and  ( = 0   = 0). That is, an

additive structural mean model is is a model for the average causal effect of treatment level  compared to treatment

level 0 among the subset of subjects at level  of the instrument and level  of the confounders whose observed treatment

is precisely . The parameters of this model can be identified via g-estimation under the conditional counterfactual

mean independence assumption

E
£
 =0| = 1  ¤ = 

£
 =0| = 0  ¤ 

Analogously, a general multiplicative structural mean model assumes

E [ |  ] = E [0|  ] exp [ (  ∗)]

where  (  ) is a known function and  ( = 0   = 0) =  ( = 0   = 0) = 0. The parameters of

this model can also be identified via g-estimation under analogous conditions. Conditions for identification as well as

efficient estimators for structural mean models were discussed by Robins (1994).

Even more generally, g-estimation of nested additive and multiplicative structural mean models can extend IV

methods for time-fixed treatments and confounders to settings with time-varying treatments and confounders.

larger the number of proposed instruments, the more likely that some of them

will violate one of the instrumental conditions.

16.6 Instrumental variable estimation versus other methods

IV estimation differs from all previously discussed methods in at least three

aspects.

First, IV estimation requires modeling assumptions even if infinite data

were available. This is not the case for previous methods like IP weighting

or standardization: If we had treatment, outcome, and confounder data from

all individuals in the super-population, we would simply calculate the average

treatment effect as we did in Part I of this book, nonparametrically. In contrast,

even if we had data on instrument, treatment, and outcome from all individuals

in the super-population, IV estimation effectively requires the use of modeling

assumptions in order to identify the average causal effect in the population.

The homogeneity condition (iv) is mathematically equivalent to setting to zero

the parameter corresponding to a product term in a structural mean model

(see Technical Point 16.1). That is, IV estimation cannot be nonparametric–IV estimation is not the only

method that requires modeling

for identification of causal ef-

fects. Other econometric ap-

proaches like regression disconti-

nuity analysis (Thistlewaite and

Campbell 1960) do too.

models are required for identification–which explains why the method was not

discussed in Part I of this book.

Second, relatively minor violations of conditions (i)-(iv) for IV estimation

may result in large biases of unpredictable or counterintuitive direction. The

foundation of IV estimation is that the denominator blows up the numerator.

Therefore, when the conditions do not hold perfectly or the instrument is weak,

there is potential for explosive bias in either direction. As a result, an IV es-

timate may often be more biased than an unadjusted estimate. In contrast,
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previous methods tend to result in slightly biased estimates when their iden-

tifiability conditions are only slightly violated, and adjustment is less likely to

introduce a large bias. The exquisite sensitivity of IV estimates to departures

from its identifiability conditions makes the method especially dangerous for

novice users, and highlights the importance of sensitivity analyses. In addition,Baiocchi and Small (2014) review

some approaches to quantify how

sensitive IV estimates are to viola-

tions of key assumptions.

it is often easier to use subject-matter knowledge to think about unmeasured

confounders of the effect of  on  and how they may bias our estimates than

to think about unmeasured confounders of the effect of  on  and how they

and the existence of defiers or effect heterogeneity may bias our estimates.

Third, the ideal setting for the applicability of standard IV estimation is

more restrictive than that for other methods. As discussed in this chapter,

standard IV estimation is better reserved for settings with lots of unmeasured

confounding, a truly dichotomous and time-fixed treatment , a strong and

causal proposed instrument , and in which either effect homogeneity is ex-

pected to hold, or one is genuinely interested in the effect in the compliers and

monotonicity is expected to hold. A consequence of these restrictions is that

IV estimation is generally used to answer relatively simple causal questions,

such as  = 1 versus  = 0. For this reason, IV estimation will not be a

prominent method in Part III of this book, which is devoted to time-varying

treatments and the contrast of complex treatment strategies that are sustained

over time.

Causal inference relies on transparency of assumptions and on triangulationTransparency requires proper re-

porting of IV analyses. See some

suggested guidelines by Brookhart

et al (2010), Swanson and Hernán

(2013), and Baiocchi and Small

(2014).

of results from methods that depend on different sets of assumptions. IV

estimation is therefore an attractive approach because it depends on a different

set of assumptions than other methods. However, because of the wide 95%

confidence intervals typical of IV estimates, the value added by using this

approach will often be small. Also, users of IV estimation need to be critically

aware of the limitations of the method. While this statement obviously applies

to any causal inference method, the potentially counterintuitive direction and

magnitude of bias in IV estimation requires especial attention.



68 Causal Inference



Chapter 17
CAUSAL SURVIVAL ANALYSIS

In previous chapters we have been concerned with causal questions about the treatment effects on outcomes

occurring at a particular time point. For example, we have estimated the effect of smoking cessation on weight

gain measured in the year 1982. Many causal questions, however, are concerned with treatment effects on the time

until the occurrence of an event of interest. For example, we may want to estimate the causal effect of smoking

cessation on the time until death, whenever death occurs. This is an example of a survival analysis.

The use of the word “survival” does not imply that the event of interest must be death. The term “survival

analysis”, or the equivalent term “failure time analysis”, is applied to any analyses about time to an event, where

the event may be death, marriage, incarceration, cancer, flu infection, etc. Survival analyses require some special

considerations and techniques. Much of Part III of this book will be devoted to survival analysis for causal inference

involving time-varying treatments. This Chapter is a bridge between Parts II and III in which we outline basic

techniques for survival analysis in the simplified setting of fixed (non-time-varying) treatments.

17.1 Hazards and risks

Suppose we want to estimate the average causal effect of smoking cessation 

(1: yes, 0: no) on the time to death  with time measured from the start of

follow-up. This is an example of a survival analysis: the outcome is time to

an event of interest that can occur at any time after the start of follow-up.

In most follow-up studies, the event of interest is not observed to happen for

all, or even the majority of, individuals in the study. This is so because most

follow-up studies have an end of follow-up: the administrative end of follow-up.

After the administrative end of follow-up, no additional data can be used.For simplicity, we will ignore some

methodological problems of our ex-

ample (see Fine Point 12.1). Also,

for simplicity, we will assume that

anyone without confirmed death

survived the follow-up period. In

reality, some individuals may have

died but confirmation (by either a

death certificate or a proxy inter-

view) was not feasible.

An individual who does not develop the event of interest before the adminis-

trative end of follow-up has her survival time administratively censored, that

is, we know that she survived beyond the administrative end of follow-up, but

we do not know for how much longer. For example, let us say that we conduct

the above survival analysis among 1629 cigarette smokers from the NHEFS

who were aged 25-74 years at baseline and who were alive through 1982. For

all individuals, the start of follow-up is January 1, 1983 and the administrative

end of follow-up is December 31, 1992. We define the administrative censoring

time to be the difference between the date of administrative end of follow-up

and date at which follow-up begins. In our example this is 120 months for

all individuals. Because only 318 individuals died before the end of 1992, the

survival time of the remaining 1311 individuals is administratively censored.

Administrative censoring is a problem intrinsic to survival analyses–studiesIn a study with staggered entry

(i.e., with a variable start of follow-

up date) different individuals will

have different administrative cen-

soring times, even when the admin-

istrative end of follow-up date is

common to all.

of smoking cessation and death will rarely, if ever, follow a cohort of individuals

until extinction–but administrative censoring is not the only type of censoring

that may occur in survival analyses. Like any other causal analysis, survival

analysis may also need to handle non-administrative types of censoring, such

as loss to follow-up, dropout from the study, and competing events (see Fine

Point 17.1). In previous chapters we have discussed how to adjust for the

selection bias introduced by non-administrative censoring via standardization
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or IP weighting. The same approaches can be applied to survival analyses.

Therefore, in this chapter, we will focus on administrative censoring. We defer

a more detailed consideration of non-administrative censoring to Part III of the

book because non-administrative censoring is generally a time-varying process,

whereas the time of administrative censoring is fixed at baseline.

In our example the month of death  can take values from 1 (January 1983)

to 120 (December 1992).  is known for 102 treated ( = 1) and 216 untreated

( = 0) individuals who died during the follow-up, and is administratively

censored (that is, all we know is that it is greater than 120 months) for the

remaining 1311 individuals. Therefore we cannot compute the mean survivalbE[ ] as we did in previous chapters with the outcome of interest. Rather, in
survival analysis we need to use other measures that can accommodate admin-

istrative censoring. Two common measures are the survival probability–or

the probability of its complement: the risk–and the hazard. Let us define

these quantities, both of which are functions of the survival time  .

The survival probability Pr [  ], or simply the survival, is the proportion

of individuals who survived through time . If we calculate the survivals at

each month until the administrative end of follow-up  = 120 and plot them

along a horizontal time axis, we obtain the survival curve. The survival curve

starts at Pr [  0] = 1 for  = 0 and then decreases monotonically–that is,

Figure 17.1

it does not increase–with subsequent values of  = 1 2 . Alternatively,

we can define risk, or cumulative incidence, at  as one minus the survival

1−Pr [  ] = Pr [ ≤ ]. The risk, or cumulative incidence, curve starts at

Pr [ ≤ 0] = 0 and increases monotonically during the follow-up.
In survival analyses, a natural approach to quantify the treatment effect is

to contrast the survival (or risk) under each treatment level at some or all times

. In our smoking cessation example, suppose for a second that quitters ( =

1) and non-quitters ( = 0) are marginally exchangeable, i.e., that smoking

cessation occurred at random with respect to mortality. Then we can construct

the survival curves shown in Figure 17.1 and compare Pr [  | = 1] versus
Pr [  | = 0] for all times . For example, the survival at 120 months

was 762% among quitters ( = 1) and 820% among non-quitters ( = 0). A

common statistical test to compare survival curves (the log-rank test) yielded a

low P-value= 0005, which suggests that the differences between the curves are

not due to chance. Alternatively, we could contrast the risks, or cumulative

incidences, rather than the survivals. For example, the 120-month risk wasCode: Program 17.1
The survival curves are con-

structed using the Kaplan-Meier,

or product-limit, method. A con-

trast of these curves may not have

a causal interpretation because the

treated and the untreated are prob-

ably not exchangeable. See Section

17.4.

238% among quitters ( = 1) and 180% among non-quitters ( = 0).

At any time , we can also calculate the proportion of individuals who

develop the event among those who had not developed it before . This is

the hazard Pr [ = |   − 1]. Technically, this is the discrete time hazard,
that is, the hazard in a study in which time is measured in discrete intervals–

as opposed to measured continuously. Because in real-world studies, time is

indeed measured in discrete intervals (years, months, weeks, days...) rather

than in a truly continuous fashion, we will refer to the discrete time hazards

as, simply, the hazard.

The risk and the hazard are different measures. The denominator of the

risk–the number of individuals at baseline–is constant across times  and its

numerator–all events between baseline and –is cumulative. That is, the risk

will stay flat or increase as  increases. On the other hand, the denominator

of the hazard–the number of individuals alive at –varies over time  and

its numerator includes only recent events–those during interval . That is,

the hazard may increase or decrease over time. In our example, the hazard at

120 months was 0% among quitters (because the last death happened at 113
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months in this group) and 1986 = 010% among non-quitters, and the hazardCode: Program 17.1
curves between 0 and 120 months had roughly the shape of a letter  .

A frequent approach to quantify the treatment effect in survival analyses

is to estimate the ratio of the hazards in the treated and the untreated, known

as the hazard ratio. However, the hazard ratio is problematic for two reasons.

First, because the hazards vary over time, the hazard ratio generally does

too. That is, the ratio at time  may differ from that at time  + 1. However,

many published survival analyses report a single hazard ratio, which is usually

the consequence of fitting a Cox proportional hazards model that assumes a

constant hazard ratio by ignoring interactions with time. The reported hazard

ratio is a weighted average of the time-specific hazard ratios, which makes itIf the cumulative incidence of the

diseases is rare and the only cen-

soring occurs at a common admin-

istrative censoring time , then the

weight of the hazard ratio at time 

is proportional to the total number

of events among untreated subjects

that occur at k. Technically, this

means that the weights are equal

to the conditional density at  of 

given  = 0 and   .

hard to interpret. Because it is a weighted average, the reported hazard ratio

may be 1 even if the survival curves are not identical. In contrast to the hazard

ratio, survival and risks are always presented as depending on time, e.g., the

5-year survival, the 120-month risk.

Second, even if we presented the time-specific hazard ratios, their causal

interpretation is not straightforward. Suppose treatment kills all high-risk in-

dividuals by time  and has no effects on others. Then the hazard ratio at

time  + 1 compares the treated and the untreated individuals who survived

Hernán (2010) described an exam-

ple of this problem.

through . In the treated group, the survivors are all low-risk individuals

(because the high-risk ones have already been killed by treatment); in the un-

treated group, the survivors are a mixture of high-risk and low-risk individuals

(because treatment did not weed out the former). As a result the hazard ra-

tio at  + 1 will be less than 1 even though treatment is not beneficial for

any individual. This apparent paradox is an example of selection bias due to

conditioning on a post-treatment variable (i.e., alive at ) that is affected by

treatment, and thus cannot happen if the survival curves are the same in the

treated and the untreated.Other effect measures that can be

derived from survival curves are

years of life lost and the restricted

mean survival time.

Because of this, the survival analyses in this book privilege survival/risk

over hazard. However, that does not mean that we should ignore hazards. The

estimation of hazards is often a useful intermediate step for the estimation of

survivals and risks.

17.2 From hazards to risks

In survival analyses, there are two main ways to arrange the analytic dataset.

In the first data arrangement each row of the database corresponds to one

person. This data format–often referred to as the long or wide format when

there are time-varying treatments and confounders–is the one we have used

so far in this book. In the analyses of the previous section, the dataset had

1629 rows, one per individual.

In the second data arrangement each row of the database corresponds to a

person-time. That is, the first row contains the information for person one at

 = 0, the second row the information for person one at  = 1, the third row

the information for person one at  = 2, and so on until the follow-up of person

one ends. The next row contains the information of person 2 at  = 0, etc.

This person-time data format is the one we will use in most survival analyses

in this chapter and in all analysis with time-varying treatments in Part III. In

our smoking cessation example, the person-time dataset has 176 764 rows, one

per person-month.

To encode survival information though  in the person-time data format,
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Fine Point 17.1

Competing events. As described in Section 8.5, a competing event is an event (typically, death) that prevents the

event of interest (e.g., Alzheimer’s disease) from happening: once an individual dies, the follow-up is truncated and no

Alzheimer’s disease can occur. Consider four strategies to handle truncation by death:

1. Consider the competing event as a form of non-administrative censoring and assume that the censoring is inde-

pendent of the risk factors for the event of interest. This approach may lead to selection bias as discussed in

Chapter 8.

2. Consider the competing event as a form of non-administrative censoring and try to adjust for the selection bias

(by, say, IP weighting) using data on the measured risk factors for the event of interest. If successful, this

approach effectively simulates a population in which death is either abolished or independent of the risk factors

for Alzheimer’s disease. In either case, the estimate is hard to interpret and may not correspond to a meaningful

estimand (see Chapter 8).

3. Do not consider the competing event as a form of censoring and deterministically set the time to event to be

infinite. That is, dead individuals are considered to have probability zero of developing Alzheimer’s disease between

their death and the administrative end of follow-up. This approach also raises questions about the interpretation

of the estimate.

4. Create a composite event that includes both the competing event and the event of interest (e.g., death and

Alzheimer’s disease) and conduct a survival analysis for the composite event. This approach eliminates the

selection bias but fundamentally changes the causal question.

5. Restrict the inference to the principal stratum of individuals who would not die regardless of the treatment level

they received. This is logically equivalent to estimating the effect in the never-takers as defined in Chapter 16.

Unfortunately, this approach creates both identification difficulties (partial identification coupled with sensitivity

analyses may be the only reasonable strategy) and interpretation problems (who are the never-takers?).

None of these strategies solves the problem of truncation by death satisfactorily. Truncation by competing events

raises logical questions about the meaning of the causal estimand that cannot be bypassed by statistical techniques.

it is helpful to define a time-varying indicator of event . For each person at

each month , the indicator  takes value 1 if  ≤  and value 0 if   .

In the person-time data format, the row for a particular individual at time 

includes the indicator +1. In our example, the first row of the person-time

dataset, for individual one at  = 0, includes the indicator 1, which is 1 if theNote that, by definition, everybody

had to survive month 0 in order

to be included in the dataset, i.e.,

0 = 0 for all individuals.

individual died during month 1 and 0 otherwise; the second row, for individual

one at  = 1, includes the indicator 2, which is 1 if the individual died during

month 2 and 0 otherwise; and so on. The last row in the dataset for each

individual is either her first row with +1 = 1 or the row corresponding to

month 119.

Using the time-varying outcome variable , we can define survival at 

as Pr [ = 0], which is equal to Pr [  ], and risk, or cumulative incidence,

at  as Pr [ = 1], which is equal to Pr [ ≤ ]. The hazard at  is defined

as Pr [ = 1|−1 = 0]. For  = 1 the hazard is equal to the risk because

everybody is, by definition, alive at  = 0.

The survival probability at  is the product of the conditional probabilities

of having survived each interval between 0 and . For example, the survival

at  = 2, Pr [2 = 0], is equal to survival probability at  = 1, Pr [1 = 0],

times the survival probability at  = 2 conditional on having survived through
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Fine Point 17.2

Models for survival analysis. Methods for survival analysis need to accommodate the expected censoring of failure

times due to administrative end of follow-up.

Nonparametric approaches to survival analysis, like constructing Kaplan-Meier curves, make no assumptions about

the distribution of the unobserved failure times due to administrative censoring. On the other hand, parametric models

for survival analysis assume a particular statistical distribution (e.g., exponential, Weibull) for the failure times or hazards.

The logistic model described in the main text to estimate hazards is an example of a parametric model.

Other models for survival analysis, like the Cox proportional hazards model and the accelerated failure time (AFT)

model, do not assume a particular distribution for the failure times or hazards. In particular, these models are agnostic

about the shape of the hazard when all covariates in the model have value zero–often referred to as the baseline hazard.

These models, however, impose a priori restrictions on the relation between the baseline hazard and the hazard under

other combinations of covariate values. As a result, these methods are referred to as semiparametric methods.

See the book by Hosmer, Lemeshow, and May (2008) for a review of applied survival analysis. More formal

descriptions can be found in the books by Fleming and Harrington (2005) and Kalbfleisch and Prentice (2002).

 = 1, Pr [2 = 0|1 = 0]. More generally, the survival at  is

Pr [ = 0] =

Y
=1

Pr [ = 0|−1 = 0]

That is, the survival at  equals the product of one minus the hazard at all

previous times. If we know the hazards through  we can easily compute the

survival at  (or the risk at , which is just one minus the survival).

The hazard at , Pr [ = 1|−1 = 0], can be estimated nonparametri-
cally by dividing the number of cases during the interval  by the number of

individuals alive at the end of interval  − 1. If we substitute this estimate
into the above formula the resulting nonparametric estimate of the survival

Pr [ = 0] at  is referred to as the Kaplan-Meier estimator. Typically the

number of cases during each interval is low (or even zero) and thus these non-

parametric hazard estimates will be very unstable. Even so, the Kaplan-Meier

estimator remains an excellent estimator of the survival curve, provided the to-

tal number of failures over the follow up period is reasonably large. Figure 17.1

was constructed using the Kaplan-Meier estimator. In contrast, if our interest

is in estimation of the hazard at a particular , smoothing via a parametric

model may be required (see Chapter 11 and Fine Point 17.2).

An easy way to parametrically estimate the hazards (or one minus the

hazards) is to fit a logistic regression model for Pr [+1 = 0| = 0] that, atFunctions other than the logit (e.g.,

the probit) can also be used to

model dichotomous outcomes and

therefore to estimate hazards.

each , is restricted to individuals who survived through . The fit of this model

is straightforward when using the person-time data format. In our example,

we can estimate (one minus) the hazards in the treated and the untreated by

fitting the logistic model

logit Pr [+1 = 1| = 0 ] = 0 + 1+ 2×  + 3× 2

where 0 is a time-varying intercept that can be estimated by some flexible

function of time such as 0 = 0 + 4 + 5
2. The flexible time-varying

intercept allows for a time-varying hazard and the product terms between

treatment  and time (2×+ 3×2) allow the hazard ratio to vary over

time. See Technical Point 17.1 for details on how a logistic model approximates

a hazards model.
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We then compute estimates of the survival Pr [+1 = 0| = ] by multi-

plying the estimates of Pr [+1 = 0| = 0  = ] provided by the logisticCode: Program 17.2
Although each person occurs in

multiple rows of the person-time

data structure, the standard error of

the parameter estimates outputted

by a routine logistic regression pro-

gram will be correct if the hazards

model is correct.

model, separately for the treated and the untreated. Figure 17.2 shows the

survival curves obtained after parametric estimation of the hazards. These

curves are a smooth version of those in Figure 17.1.

The validity of this procedure requires no misspecification of the hazards

model. In our example this assumption seems plausible because we obtained

essentially the same survival estimates as in the previous section when we

estimated the survival in a fully nonparametric way. A 95% confidence interval

around the survival estimates can be easily constructed via bootstrapping.

17.3 Why censoring matters

The only source of censoring in our study is a common administrative censoring

time  that is identical for all individuals. In this simple setting the proce-

Figure 17.2

dure described in the previous section to estimate the survival is overkill. One

can simply estimate the survivals Pr [+1 = 0| = ] by the fraction of indi-

viduals who received treatment  and survived to  + 1, or by fitting separate

logistic models for Pr [+1 = 0|] at each time, for  = 0 1  .
Now suppose that individuals start the follow-up at different dates–there

is staggered entry into the study–but the administrative end of follow-up date

is common to all. Because the administrative censoring time is the difference

between the administrative end of follow-up and the time of start of follow-

up, different individuals will have different administrative censoring times. In

this setting it is helpful to define a time-varying indicator  for censoring

by time . For each person at each month , the indicator  takes value

0 if the administrative end of follow-up is greater than  and takes value 1

otherwise. In the person-time data format, the row for a particular individual

at time  includes the indicator +1. We did not include this variable in

our dataset because +1 = 0 for all individuals at all times   . In

the general case with random (i.e., subject-specific) administrative censoring,

the indicator +1 will transition from 0 to 1 at different times  for different

people.

Our goal is to estimate the survival curve from  = 0 to  that would

have been observed if nobody had been censored before , where  is

the maximum administrative censoring time in the study. That is, our goal is

to estimate the survival Pr [ = 0| = ] that would have been observed if

the value of the time-varying indicators  were known even after censoring.

Technically, we can also refer to this quantity as Pr
h
=0
 = 0| = 

i
where

 = (1 2). As discussed in Chapter 12, the use of the superscript

 = 0 makes it explicit the quantity that we have in mind, even if we some-

times choose not to use the superscript  = 0 when no confusion can arise. For

simplicity, suppose that the time of start of follow-up was as if randomly as-

signed to each individual, as would be the case if there were no secular trends

in any variable. Then the administrative censoring time, and therefore the

indicator , is independent of both treatment and death time.

We cannot validly estimate this survival Pr [ = 0| = ] at time  by

simply computing the fraction of individuals who received treatment  and

survived and were not censored through . This fraction is valid estimator

of the joint probability Pr [+1 = 0+1 = 0| = ], which is not what we
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Technical Point 17.1

Approximating the hazard ratio via a logistic model. The (discrete-time) hazard ratio at time  + 1
Pr[+1=1|=0=1]

Pr[+1=1|=0=0]
is exp (1) in the hazards model Pr [+1 = 1| = 0 ] = Pr [+1 = 1| = 0  = 0] ×

exp (1). If we take logs on both sides of the equation, we obtain log Pr [+1 = 1| = 0 ] = 0 + 1 where

0 = logPr [+1 = 1| = 0  = 0].

Suppose the hazard at  + 1 is small, i.e., Pr [+1 = 1| = 0 ] ≈ 0. Then one minus the hazard at  + 1 is
close to one, and the hazard is approximately equal to the odds: Pr [+1 = 1| = 0 ] ≈ Pr[+1=1|=0]

Pr[+1=0|=0]
. We

then have

log
Pr [+1 = 1| = 0 ]

Pr [+1 = 0| = 0 ]
= logit Pr [+1 = 1| = 0 ] ≈ 0 + 1

That is, if the hazard is close to zero at  + 1, we can approximate the log hazard ratio 1 by 1 in a logistic model

logit Pr [+1 = 1| = 0 ] = 0+1 like the one we used in the main text. As a rule of thumb, the approximation

is often considered to be accurate enough when Pr [+1 = 1| = 0 ]  01 for all .

This rare event condition can almost always be guaranteed to hold: we just need to define a time unit  that is

short enough for Pr [+1 = 1| = 0 ]  01. For example, if  stands for lung cancer,  may be measured in

years; if  stands for infection with the common cold virus,  may be measured in days. The shorter the time unit,

the more rows in the person-time dataset used to fit the logistic model.

want. To see why, consider a study with  = 2 and in which the following

happens:

• Pr [1 = 0] = 1, i.e., nobody is censored by  = 1

• Pr [1 = 0|0 = 0] = 09, i.e., 90% of individuals survive through  = 1

• Pr [2 = 0|1 = 0 1 = 0] = 05, i.e., a random half of survivors is cen-

sored by  = 2

• Pr [2 = 0|2 = 01 = 0 1 = 0] = 09, i.e., 90% of the remaining in-

dividuals survive through  = 2

The fraction of uncensored survivors at  = 2 is 1× 09× 05× 09 = 0405.
However, if nobody had been censored, i.e., if i.e., Pr [2 = 0|1 = 0 1 = 0] =

1, the survival would have been 1 × 09 × 1 × 09 = 081. This example

motivates how correct estimation of the survivals Pr [ = 0| = ] requires

the procedures described in the previous section.

Specifically, under (as if) randomly assigned censoring, the survival Pr [ = 0| = ]

at  is
Y

=1

Pr [ = 0|−1 = 0  = 0  = ] for   

The estimation procedure is the same as described above except that we either

use a nonparametric estimate of, or fit a logistic model for, the cause-specific

hazard Pr [+1 = 1| = 0 +1 = 0  = ]. The next sections extend this

procedure to incorporate adjustment for confounding via g-methods. In Part

III we extend the procedure to settings with time-varying treatments and con-

founders, and in which censoring is not as if randomly assigned.
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17.4 Inverse probability weighting of marginal structural models

When the treated and the untreated are not exchangeable, a direct contrast

of their survival curves cannot be endowed with a causal interpretation. In

our smoking cessation example, we estimated that the 120-month survival was

lower in quitters than in non-quitters (762% versus 820%), but that does not

necessarily imply that smoking cessation increases mortality. Older people are

more likely to quit smoking and also more likely to die. This confounding by

age makes smoking cessation look bad because the proportion of older people

is greater among quitters than among non-quitters.

Let us define 
=0
 as a counterfactual time-varying indicator for death at

 under treatment level  and no censoring. Again, for simplicity of notation,

we will write 
=0
 as 

 when, as in this chapter, it is clear that the goal

is estimating the survival in the absence of censoring. Suppose we want to

compare the counterfactual survivals Pr
£
=1
 = 0

¤
and Pr

£
=0
 = 0

¤
that

would have been observed if everybody had received treatment ( = 1) and no

treatment ( = 0), respectively. That is, the causal contrast of interest is

Pr
£
=1
 = 0

¤
vs. Pr

£
=0
 = 0

¤
for  = 1 2 

Because of confounding, this contrast may not be validly estimated by the

contrast of the survivals Pr [ = 0| = 1] and Pr [ = 0| = 0] that we de-
scribed in the previous sections. Rather, a valid estimation of the quantities

Pr
h

=0
 = 0

i
for  = 1 and  = 0 typically requires adjustment for con-

founders, which can be achieved through several methods. This section focuses

on IP weighting.

Let us assume, as in Chapters 12 to 15, that the treated ( = 1) and the

untreated ( = 0) are exchangeable within levels of the  variables: sex, age,

race, education, intensity and duration of smoking, physical activity in daily

life, recreational exercise, and weight. We also assume positivity and well-

defined interventions. The estimation of IP weighted survival curves has two

steps.

First, we estimate the stabilized IP weight  for each individual in

the study population. The procedure is exactly the same as the one de-Code: Program 17.3
scribed in Chapter 12. We fit a logistic model for the conditional probabil-

ity Pr [ = 1|] of treatment (i.e., smoking cessation) given the variables in
. The denominator of the estimated  is cPr [ = 1|] for treated indi-
viduals and

³
1−cPr [ = 1|]´ for untreated individuals, where cPr [ = 1|]

is the predicted value from the logistic model. The numerator of the esti-

mated weight  is cPr [ = 1] for the treated and ³1−cPr [ = 1]´ for the
untreated, where cPr [ = 1] can be estimated nonparametrically or as the pre-
dicted value from a logistic model for the marginal probability Pr [ = 1] of

treatment. See Chapter 11 for details on predicted values.

The application of the estimated weights  creates a pseudo-population

in which the variables in  are independent from the treatment , which

eliminates confounding by those variables. In our example, the weights had

mean 1 (as expected) and ranged from 033 to 421.

Second, using the person-time data format, we fit a hazards model like the

one described in the previous except that individuals are weighted by their

estimated . Technically, this IP weighted logistic model estimates the

parameters of the marginal structural logistic model

logit Pr
£

+1 = 0|

 = 0
¤
= 0 + 1+ 2×  + 3× 2
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That is, the IP weighted model estimates the time-varying hazards that would

have been observed if all individuals in the study population had been treated

( = 1) and the time-varying hazards if they had been untreated ( = 0).

Figure 17.3

The estimates of Pr
£

+1 = 0|

 = 0
¤
from the IP weighted hazards mod-

els can then be multiplied over time (see previous section) to obtain an estimate

of the survival Pr
£

+1 = 0

¤
that would have been observed under treatment

 = 1 and under no treatment  = 0. The resulting curves are shown in Figure

17.3.

In our example, the 120-month survival estimates were 807% under smok-

ing cessation and 805% under no smoking cessation; difference 02% (95% con-

fidence interval from −41% to 37% based on 500 bootstrap samples). Though
the survival curve under treatment was lower than the curve under no treat-

ment for most of the follow-up, the maximum difference never exceeded −14%
with a 95% confidence interval from −34% to 07%. That is, after adjustment
for the covariates  via IP weighting, we found little evidence of an effect of

smoking cessation on mortality at any time during the follow-up. The validity

of this procedure requires no misspecification of both the treatment model and

the marginal hazards model.

17.5 The parametric g-formula

In the previous section we estimated the survival curve under treatment and

under no treatment in the entire study population via IP weighting. To do so,

we adjusted for  and assumed exchangeability and positivity given  as well

as well-defined interventions. Another method to estimate the marginal sur-

vival curves under those assumptions is standardization or, more generally,the

parametric g-formula.

The g-formula to compute the survival Pr
£

+1 = 0

¤
at +1 under treat-

ment level  is the weighted average of the survival conditional probabilities

at  + 1 within levels of the covariates in  and treatment level  = , with

the proportion of individuals in each level  of  as the weights. That is, the

g-formula in the absence of censoring is just the standardized survivalX


Pr [+1 = 0| =   = ] Pr [ = ]

because we are working with time-fixed treatment  and confounders . For

Figure 17.4

a formal proof, see Section 2.3.

Therefore the estimation of the g-formula has two steps. First, we need to

estimate the conditional survivals Pr [+1 = 0| =   = ] using our admin-

istratively censored data. Second, we need to compute their weighted average

over all values  of the covariates . We describe each of these two steps in our

smoking cessation example.

For the first step we fit a parametric hazards model like the one described

in the Section 17.3 except that the variables in  are included as covariates. If

the model is correctly specified, it validly estimates the time-varying hazards

Pr [+1 = 1| = 0 +1 = 0 ] within levels of treatment  and covari-

ates . The product of one minus the conditional hazards

Y
=0

Pr [+1 = 0| = 0 +1 = 0  =   = ]
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is equal to the conditional survival Pr [+1 = 0| =   = ]. Because of

conditional exchangeability given , the conditional survival for a particular

set of covariate values  =  and  =  can be causally interpreted as the

survival that would have been observed if everybody with that set of covariates

had received treatment value . That is,

Pr [+1 = 0| =   = ] = Pr
£

+1 = 0| = 

¤
Therefore the conditional hazards can be used to estimate the survival curve

under treatment ( = 1) and no treatment ( = 0) within each combination

of values  of . For example, we can use this model to estimate the survivalIn Chapter 12 we referred to models

conditional on all the covariates 

as faux marginal structural models.

curves under treatment and no treatment for white men aged 61, with college

education, low levels of exercise, etc. However, our goal is estimating the

marginal, not the conditional, survival curves under treatment and under no

treatment.

For the second step we compute the weighted average of the conditional

survival across all values  of the covariates , i.e., to standardize the survival to

the confounder distribution. To do so, we use the method described in Section

13.3 to standardize means: standardization by averaging after expansion of

dataset, outcome modeling, and prediction. This method can be used even

when some the variables in  are continuous, that is, when the sum over

values  is formally an integral. The resulting curves are shown in Figure 17.4.Code: Program 17.4
The procedure is analogous to the

one described in Chapter 13
In our example, the survival curve under treatment was lower than the curve

under no treatment during the entire follow-up, but the maximum difference

never exceeded−20% (95% confidence interval from−59% to 18%). The 120-
month survival estimates were 810% under smoking cessation and 822% under

no smoking cessation; difference −12% (95% confidence interval from −69%
to 37%). That is, after adjustment for the covariates  via standardization,

we found little evidence of an effect of smoking cessation on mortality at any

time during the follow-up. Note that the survival curves estimated via IP

weighting (previous section) and the g-formula (this section) are similar but

not identical because they rely on different parametric assumptions: the IP

weighted estimates require no misspecification of a model for treatment and

a model for the unconditional hazards; the g-formula estimates require no

misspecification of a model for the marginal hazards.

17.6 G-estimation of structural nested models

The previous sections describe causal contrasts that compare survivals, or risks,

under different levels of treatment . The survival was computed from hazards

estimated by logistic regression models. This approach is feasible when the an-

alytic method is IP weighting of marginal structural models or the parametric

g-formula, but not when the method is g-estimation of structural nested mod-

els. As explained in Chapter 14, structural nested models are models for causal

contrasts (e.g., the difference or ratio of means under different treatment lev-

els), not for the components of those contrasts (e.g., each of the means under

different treatment levels). Therefore we cannot estimate survivals or hazardsIn fact, we may not even approxi-

mate a hazard ratio because struc-

tural nested logistic models do not

generalize easily to time-varying

treatments (Technical Point 14.1).

using a structural nested model.

We can, however, consider a structural nested log-linear model to model

the ratio of survival probabilities under different treatment levels. Structural

nested cumulative failure time models do precisely that (see Technical Point
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Technical Point 17.2

Structural nested cumulative failure time (CFT) models. For a time-fixed treatment, a (non-nested) structural

CFT model is a model for the ratio of the counterfactual risk under treatment value  divided by the counterfactual risk

under treatment level 0 conditional on treatment  and covariates . The general form of the model is

Pr [
 = 1|]

Pr [=0
 = 1|] = exp[(;)]

where ( ;) is a function of treatment and covariate history indexed by the (possibly vector-valued) parameter

. For consistency, the exponentiated function ( ;) must be 1 when  = 0, because then the two treatment

regimes being compared are identical, and when there is no effect of treatment at time  on outcome at time . An

example of a function is ( ;) =  so  = 0 corresponds to no effect,   0 to beneficial effect, and   0

to harmful effect.

For a time-varying treatment, this class of models can be viewed as a special case of the multivariate structural

nested mean model (Robins 1994). The use of structural CFT models requires that, for all values of the covariates

, the conditional cumulative probability of failure under all treatment values satisfies a particular type of rare failure

assumption. In this “rare failure” context, the structural CFT model has an advantage over AFT models: it admits

unbiased estimating equations that are differentiable in the model parameters and thus are easily solved. Picciotto et al

(2012) provided further details on structural CFT models.

17.2), but they can only be used for rare outcomes because log-linear models

do not impose an upper limit on probabilities of survival. A more general

option is to use a structural nested model that models the ratio of survival

times under different treatment options. That is, an accelerated failure timeTchetgen Tchetgen et al (2015)

and Robins (1997b) describe sur-

vival analysis with instrumental

variables that exhibit similar prob-

lems to those described here for

structural nested models.

(AFT) model.

Let  
 be the counterfactual time of survival for subject  under treat-

ment level . The effect of treatment  on individual ’s survival time can be

measured by the ratio  =1
  =0

 of her counterfactual survival times under

treatment and under no treatment. If the survival time ratio is greater than 1,

then treatment is beneficial because it increases the survival time; if the ratio

is less than 1, then treatment is harmful; if the ratio is 1, then treatment has

no effect. Suppose, temporarily, that the effect of treatment is the same for

every individual in the population.

We could then consider the structural nested accelerated failure time (AFT)The ‘nested’ component is only

evident when treatment is time-

varying.

model  
 

=0
 = exp (−1), where 1 measures the expansion (or contrac-

tion) of each individual’s survival time attributable to treatment. If 1  0

then treatment increases survival time, if 1  0 then treatment decreases

survival time, if 1 = 0 then treatment does not affect survival time. MoreThe negative sign in front of  pre-

serves the usual interpretation of

positive parameters indicating harm

and negative parameters indicating

benefit.

generally, the effect of treatment may depend on covariates  so a more general

structural AFT would be  
 

=0
 = exp (−1− 2), with 1 and 2 (a

vector) constant across individuals. Rearranging the terms, the model can be

written as

 =0
 =  

 exp (1+ 2) for all subjects 

Following the same reasoning as in Chapter 14, consistency of counterfactu-

als implies the model  =0
 =  exp (1 + 2), in which the counterfac-

tual time  
 is replaced by the actual survival time 


 = . The parameters

1 and 2 can be estimated by a modified g-estimation procedure (to account

for administrative censoring) that we describe later in this section.

The above structural AFT is unrealistic because it is both deterministic

and rank-preserving. It is deterministic because it assumes that, for each in-
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dividual, the counterfactual survival time under no treatment  =0 can be

computed without error as a function of the observed survival time  , treat-

ment , and covariates . It is rank-preserving because, under this model, if

individuals  would die before individual  had they both been untreated, i.e.,

 =0
   =0

 , then individual  would also die before individual  had they

both been treated, i.e.,  =1
   =1

 .

Because of the implausibility of rank preservation, one should not generally

use methods for causal inference that rely on it, as we discussed in Chapter 14.

And yet again we will use a rank-preserving model here to describe g-estimation

for structural AFT models because g-estimation is easier to understand for

rank-preserving models, and because the g-estimation procedure is actually

the same for rank-preserving and non-rank-preserving models.Robins (1997b) described non-

deterministic non-rank-preserving

structural nested AFT models.
For simplicity, consider the simpler rank-preserving model  =0

 =  exp ()

without a product term between treatment and covariates. G-estimation of the

parameter  of this structural AFT model would be straightforward if admin-

istrative censoring did not exist, that is, if we could observe the time of death

 for all individuals. In fact, in that case the g-estimation procedure would be

the same that we described in Section 14.5. The first step would be to compute

candidate counterfactuals (
†) =  exp

¡
†

¢
under many possible values

† of the causal parameter . The second step would be to find the value †

that results in a (
†) that is independent of treatment  in a logistic model

for the probability of  = 1 with (
†) and the confounders  as covariates.

Such value † would be the g-estimate of .
However, this procedure cannot be implemented in the presence of admin-

istrative censoring at time  because (
†) cannot be computed for individ-

uals with unknown . One might then be tempted to restrict the g-estimation

procedure to individuals with an observed survival time only, i.e., those with

 ≤ . Unfortunately, that approach results in selection bias. To see why,

consider the following oversimplified scenario.

We conduct a 60-month randomized experiment to estimate the effect of

a dichotomous treatment  on survival time  . Only 3 types of individuals

participate in our study. Type 1 individuals are those who, in the absence of

treatment, would die at 36 months ( =0 = 36). Type 2 individuals are those

who in the absence of treatment, would die at 72 months ( =0 = 72). Type 3

individuals are those who in the absence of treatment, would die at 108 months

( =0 = 108). That is, type 3 individuals have the best prognosis and type

1 individuals have the worst one. Because of randomization, we expect that

Type

1 2 3

 =0 36 72 108

 =1 24 48 72

Table 17.1

the proportions of type 1, type 2, and type 3 individuals are the same in each

of the two treatment groups  = 1 and  = 0. That is, the treated and the

untreated are expected to be exchangeable.

Suppose that treatment  = 1 decreases the survival time compared with

 = 0. Table 17.1 shows the survival time under treatment and under no treat-

ment for each type of individual. Because the administrative end of follow-up is

 = 60 months, the death of type 1 individuals will be observed whether they

are randomly assigned to  = 1 or  = 0 (both survival times are less than 60),

and the death of type 3 individuals will be administratively censored whether

they are randomly assigned to  = 1 or  = 0 (both survival times are greater

than 60). The death of type 2 individuals, however, will only be observed if

they are assigned to  = 1. Hence an analysis that welcomes all individuals

with non-administratively censored death times will have an imbalance of in-

dividual types between the treated and the untreated. Exchangeability will be

broken because the  = 1 group will include type 1 and type 2 individuals,

whereas the  = 0 group will include type 1 individuals only. Individuals in the
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Technical Point 17.3

Artificial censoring. Let () be the minimum survival time under no treatment that could possibly correspond to

an individual who actually died at time  (the administrative end of follow-up). For a dichotomous treatment ,

() =  exp ( × 0) =  if treatment contracts the survival time (i.e.,   0), () =  exp ( × 1) =  exp ()

if treatment expands the survival time (i.e.,   0), and () =  exp (0) =  if treatment does not affect survival

time (i.e.,  = 0).

All individuals who are administratively censored (i.e.,   ) have ∆() = 0 because there is at least one

treatment level (the one they actually received) under which their survival time is greater than , i.e., () ≥ ().

Some of the subjects who are not administratively censored (i.e.,  ≤ ) also have ∆() = 0 and are excluded from

the analysis–they are artificially censored–to avoid selection bias.

The artificial censoring indicator ∆() is a function of () and , but not of treatment . Under conditional

exchangeability given , all such functions, when evaluated at the true value of , are conditionally independent of

treatment  given the covariates . That is, g-estimation of the AFT model parameters can be performed based on

∆() rather than (). Technically, ∆() is substituted for () in the estimating equation of Technical Point 14.2.

For practical estimation details, see the Appendix of Hernán et al (2005).

 = 1 group will have, on average, a worse prognosis than those in the  = 0

group, which will make treatment look worse than it really is. This selection

bias (Chapter 8) arises when treatment has a non-null effect on survival time.

To avoid this selection bias, one needs to select individuals whose survival

time would have been observed by the end of follow-up whether they had

been treated or untreated, i.e., those with  =0
 ≤  and  =1

 ≤ . In our

example, we will have to exclude all type 2 individuals from the analysis in order

to preserve exchangeability. That is, we will not only exclude administratively

censored individuals with   , but also some uncensored individuals withThis exclusion of uncensored indi-

viduals from the analysis is often

referred to as artificial censoring.

known survival time  ≤  because their survival time would have been

greater than  if they had received a treatment level different from the one

they actually received.

We then define an indicator ∆(), which takes value 0 when an individual

is excluded and 1 when she is not. The g-estimation procedure is then modified

by replacing the variable (†) by the indicator ∆(†). See Technical Point
17.3 for details. In our example, the g-estimate ̂ from the rank-preserving

structural AFT model  =0
 =  exp () was −0047 (95% confidence inter-Code: Program 17.5

The program calculates the esti-

mating function described in Tech-

nical Point 7.3. The point estimate

of  is the value that corresponds

to the minimum of the estimating

function; the bounds of the 95%

confidence interval are the values

that correspond to 384 (2 with

one degree of freedom).

val: −0223 to 0333). The number exp
³
−̂
´
= 105 can be interpreted as the

median survival time that would have been observed if all individuals in the

study had received  = 1 divided by the median survival time that would have

been observed if all individuals in the study had received  = 0. This survival

time ratio suggests little effect of smoking cessation  on the time to death.

As we said in Chapter 14, structural nested models, including AFT models,

have rarely been used in practice. A practical obstacle for the implementation

of the method is the lack of user-friendly software. An even more serious ob-

stacle in the survival analysis setting is that the parameters of structural AFT

models need to be estimated though search algorithms that are not guaranteed

to find a unique solution. This problem is exacerbated for models with two or

more parameters . As a result, the few published applications of this method

tend to use simplistic AFT models that do not allow for the treatment effect

to vary across covariate values.

This state of affairs is unfortunate because subject-matter knowledge (e.g.,

biological mechanisms) are easier to translate into parameters of structural
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AFT models than into those of structural hazards models. This is especially

true when using non-deterministic and non-rank preserving structural AFT

models.




