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Outline

1. Motivation

2. Representation

3. Connecting Causation to Probability (Independence)

4. Searching for Causal Models

5. Improving on Regression for Causal Inference
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1. Motivation

Non-experimental Evidence

Typical Predictive Questions

• Can we predict aggressiveness from the amount of violent TV watched

• Can we predict crime rates from abortion rates 20 years ago

Causal Questions: 

• Does watching violent TV cause Aggression?

• I.e., if we change TV watching, will the level of Aggression change?

Day Care Aggressivenes

John 

Mary 

A lot 

None 

A lot 

A little 
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Bayes Networks
 Disease 

[Heart Disease, Reflux Disease, other] 

Shortness of Breath
[Yes, No] 

Chest Pain 
[Yes, No] 

Qualitative Part:
Directed Graph

P(Disease = Heart Disease) = .2
P(Disease = Reflux Disease) = .5
P(Disease = other) = .3

P(Chest Pain = yes | D = Heart D.) = .7
P(Shortness of B = yes | D= Hear D. ) = .8

P(Chest Pain = yes | D = Reflux) = .9
P(Shortness of B = yes | D= Reflux ) = .2

P(Chest Pain = yes | D = other) = .1
P(Shortness of B = yes | D= other ) = .2

Quantitative Part:
Conditional 

Probability Tables
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Bayes Networks: Updating

Given: Data on Symptoms

Chest Pain = yes

Wanted: 

P(Disease | Chest Pain = yes )

 Disease 
[Heart Disease, Reflux Disease, other] 

Shortness of Breath
[Yes, No] 

Chest Pain 
[Yes, No] 

 Updating P(D = Heart Disease) = .2
P(D = Reflux Disease) = .5
P(D = other) = .3

P(Chest Pain = yes | D = Heart D.) = .7
P(Shortness of B = yes | D= Hear D. ) = .8

P(Chest Pain = yes | D = Reflux) = .9
P(Shortness of B = yes | D= Reflux ) = .2

P(Chest Pain = yes | D = other) = .1
P(Shortness of B = yes | D= other ) = .2
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Causal Inference

Given: Data on Symptoms

Chest Pain = yes

P(Disease | Chest Pain = yes )
 Updating 

P(Disease | Chest Pain set= yes )

Causal Inference
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Causal Inference

When and how can we use non-experimental data to 
tell us about the effect of an intervention?

Manipulated Probability P(Y | X set= x, Z=z)

from

Unmanipulated Probability P(Y | X = x, Z=z) 
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2. Representation

1. Association & causal structure - qualitatively

2. Interventions

3. Statistical Causal Models

1. Bayes Networks

2. Structural Equation Models
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Causation & Association

X and Y are associated (X _||_ Y) iff

∃x1 ≠ x2 P(Y | X = x1) ≠ P(Y | X = x2)

Association is symmetric:  X _||_ Y   ⇔ Y _||_ X

X is a cause of Y iff
∃x1 ≠ x2 P(Y | X set= x1) ≠ P(Y | X set= x2)

Causation is asymmetric:   X     Y   ⇔ X      Y
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Direct Causation

X is a direct cause of Y relative to S, iff
∃z,x1 ≠ x2  P(Y | X set= x1 , Z set= z) 

≠ P(Y | X set= x2 , Z set= z)

where Z = S - {X,Y}

X Y
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Causal Graphs

Causal Graph G = {V,E} 
Each edge X → Y  represents a direct causal claim:

X is a direct cause of Y relative to V

 
Exposure Rash Chicken Pox

 
Exposure Infection Rash 
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Causal Graphs
Do Not need to be 
Cause Complete Omitted Causes 2Omitted Causes 1

 
Exposure Infection Symptoms 

Do need to be 
Common Cause Complete

 
Exposure Infection Symptoms 

Omitted 
Common Causes 



Graphical Models --11/30/05 13

Modeling Ideal Interventions

Ideal Interventions (on a variable X):

• Completely determine the value or 
distribution of a variable X

• Directly Target only X 
(no “fat hand”)
E.g., Variables: Confidence, Athletic Performance
Intervention 1: hypnosis for confidence
Intervention 2: anti-anxiety drug (also muscle relaxer)
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Modeling Ideal Interventions

Interventions on the Effect

Pre-experimental SystemPost

Sweaters 
On

Room 
Temperature
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Modeling Ideal Interventions

Interventions on the Cause

Pre-experimental SystemPost

Sweaters
On

Room 
Temperature
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Interventions & Causal Graphs

• Model an ideal intervention by adding an “intervention” variable 
outside the original system

• Erase all arrows pointing into the variable intervened upon 

Intervene to change Inf

Post-intervention graph?Pre-intervention graph

Exp Inf Rash

I 

Exp Inf Rash
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Conditioning vs. Intervening

P(Y | X = x1) vs. P(Y | X set= x1)

Teeth Slides 
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Causal Bayes Networks

 S m o k in g  [0 ,1 ]

 L u n g  C an ce r
[0 ,1 ]

Y e llo w  F in g e rs
[0 ,1 ]

The Joint Distribution Factors

According to the Causal Graph,

i.e., for all X in V

P(V) = ΠP(X|Immediate 
Causes of(X))

P(S = 0) = .7
P(S = 1) = .3

P(YF = 0 | S = 0) = .99 P(LC = 0 | S = 0) = .95
P(YF = 1 | S = 0) = .01 P(LC = 1 | S = 0) = .05
P(YF = 0 | S = 1) = .20 P(LC = 0 | S = 1) = .80
P(YF = 1 | S = 1) = .80 P(LC = 1 | S = 1) = .20

P(S,YF, L) = P(S) P(YF | S) P(LC | S)
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Structural Equation Models

 Education

 LongevityIncome

Causal Graph

Statistical 
Model

1. Structural Equations
2. Statistical Constraints
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Structural Equation Models

 Education

 LongevityIncome

Causal Graph

z Structural Equations:
One Equation for each variable V in the graph:

V = f(parents(V), errorV)
for SEM (linear regression) f is a linear function

z Statistical Constraints:
Joint Distribution over the Error terms
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Structural Equation Models

Equations:
Education = εed

Income = β1 Education + εincome

Longevity = β2 Education + εLongevity

Statistical Constraints:
(εed, εIncome,εIncome  )  ~N(0,Σ2)

      − Σ2 diagonal
- no variance is zero

 Education

 LongevityIncome

Causal Graph

 Education

 εIncome  εLongevity

 β1  β2

 LongevityIncome

SEM Graph

(path diagram)
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3. Connecting

Causation to Probability
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Causal 
Structure

Statistical 
Predictions

The Markov Condition

Causal Markov Axiom

Independence

X _||_ Z | Y
i.e.,

P(X | Y) = P(X | Y, Z)

Causal Graphs

 
ZY X 
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Causal Markov Axiom

If G is a causal graph, and P a 
probability distribution over the 
variables in G, then in P:

every variable V is independent of its 
non-effects, conditional on its 
immediate causes.
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Causal Markov Condition

Two Intuitions:

1) Immediate causes make effects independent of 
remote causes (Markov).

2)  Common causes make their effects independent
(Salmon).
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Causal Markov Condition

1) Immediate causes make effects independent of 
remote causes (Markov).

E = Exposure to Chicken Pox

I =  Infected

S = Symptoms
Markov Cond.

E  || S | I 
SI E 
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Causal Markov Condition

2) Effects are independent conditional on their common
causes.

 Sm oking
(S) 

Y ellow  F ingers 
(Y F) 

Lung C ancer
(L C ) 

Markov Cond.
YF  || LC | S
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Causal Structure ⇒ Statistical Data

 

X3 | X2  X1 

  X2  X3   X1 

Causal Markov Axiom 
(D-separation) 

Independence 

Acyclic Causal Graph
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Causal Markov Axiom

In SEMs, d-separation follows from 
assuming independence among error 
terms that have no connection in the path 
diagram -

i.e., assuming that the model is common 
cause complete.
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Causal Markov and 
D-Separation

• In acyclic graphs: equivalent

• Cyclic Linear SEMs with uncorrelated errors:
• D-separation correct

• Markov condition incorrect

• Cyclic Discrete Variable Bayes Nets:
• If equilibrium --> d-separation correct

• Markov incorrect 
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D-separation: 
Conditioning vs. Intervening

 

X3 

T 

X2 X1 

P(X3 | X2) ≠ P(X3 | X2, X1) 

X3 _||_ X1 | X2

 

X3 

T 

X2 X1 

I 

P(X3 | X2 set= ) = P(X3 | X2 set=, X1) 

X3 _||_ X1 | X2 set=
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4. Search

From Statistical Data
to Probability 
to Causation
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Causal Discovery
Statistical Data ⇒ Causal Structure

Background Knowledge

- X2 before X3

- no unmeasured common causes

 

X3 | X2  X1 

Independence 

 Data 

Statistical 
Inference

 

  X2  X3   X1 

Equivalence Class of 
Causal Graphs 

  X2   X3   X1 

  X2   X3   X1 

Discovery Algorithm

 

Causal Markov Axiom 
(D-separation) 
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Representations of
D-separation Equivalence Classes

We want the representations to:

• Characterize the Independence Relations 
Entailed by the Equivalence Class 

• Represent causal features that are shared 
by every member of the equivalence class
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Patterns & PAGs

• Patterns (Verma and Pearl, 1990): graphical 
representation of an acyclic d-separation 
equivalence - no latent variables.

• PAGs: (Richardson 1994) graphical 
representation of an equivalence class including
latent variable models and sample selection bias
that are d-separation equivalent over a set of 
measured variables X
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Patterns

 X2 X1

 X2 X1

 X2 X1

 X4 X3

 X2 X1

Possible Edges Example
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Patterns: What the Edges 
Mean

 X2 X1

 X2 X1
X1 →  X2 in some members of the
equivalence class, and X2 →  X1 in
others.

 X1 →  X2 (X1 is a cause of X2) in
every member of the equivalence
class.

 X2 X1
 X1 and X2 are not adjacent in any
member of the equivalence class
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Patterns

X2

X4X3

X1

X2

X4X3

Represents

Pattern

X1 X2

X4 X3

X1
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PAGs: Partial Ancestral Graphs

What PAG edges mean.

 X2 X1

 X2 X1

 X2 X1

 X2  There is a latent common
cause of X1 and X2

 No set d-separates X2 and X1

 X1 is a cause of X2

 X2 is not an ancestor of X1

 X1

 X2 X1  X1 and X2 are not adjacent
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PAGs: Partial Ancestral 
Graph

X 2

X 3

X 1

X 2

X 3

Represents

PAG

X 1  X 2

X 3

X 1

X 2

X 3

 T 1

X 1

 X 2

X 3

X 1

etc.

T 1

T 1 T 2
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Overview of Search Methods

• Constraint Based Searches
• TETRAD

• Scoring Searches
• Scores: BIC, AIC, etc.
• Search:  Hill Climb, Genetic Alg., Simulated Annealing
• Very difficult to extend to latent variable models

Heckerman, Meek and Cooper (1999). “A Bayesian Approach to Causal 
Discovery” chp. 4 in Computation, Causation, and Discovery, ed. by 
Glymour and Cooper, MIT Press, pp. 141-166



Graphical Models --11/30/05 42

Tetrad 4 Demo

www.phil.cmu.edu/projects/tetrad_download/
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5. Regession and 
Causal Inference
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Regression to estimate 
Causal Influence

• Let V = {X,Y,T}, where 

- Y : measured outcome

- measured regressors: X = {X1, X2, …, Xn}
- latent common causes of pairs in X U Y: T = {T1, …, Tk}

• Let the true causal model over V be a Structural Equation 
Model in which each V ∈ V is a linear combination of its 
direct causes and independent, Gaussian noise.
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Regression and 
Causal Inference

• Consider the regression equation:
Y = b0 +  b1X1 + b2X2 + ..…bnXn

• Let the OLS regression estimate bi  be the estimated causal 
influence of Xi on Y.  

• That is, holding X/Xi experimentally constant, bi is an estimate of 
the change in E(Y) that results from an intervention that changes 
Xi by 1 unit.

• Let the real Causal Influence Xi → Y = βi

• When is the OLS estimate bi an unbiased estimate of βi  ?
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Linear Regression

Let the other regressors O = {X1, X2,....,Xi-1, Xi+1,...,Xn}

bi = 0  if and only if   ρXi,Y.O = 0

In a multivariate normal distribuion,
ρXi,Y.O = 0 if and only if   Xi _||_  Y |  O
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Linear Regression

So in regression: 
bi = 0  ⇔ Xi _||_  Y |  O

But provably :
βi = 0  ⇐ ∃S ⊆ O, Xi _||_  Y |  S

So   ∃S ⊆ O, Xi _||_  Y |  S ⇒ βi = 0
~ ∃S ⊆ O, Xi _||_  Y |  S ⇒ don’t know (unless we’re 

lucky)
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Regression Example

b1≠ 0X1 _||_ Y | X2  X2 

Y 

 X1 

True Model 

b2 = 0X2 _||_ Y | X1

Don’t 
know

~∃S ⊆ {X2}   X1 _||_ Y | S

β2 = 0∃S ⊆ {X1}   X2 _||_ Y | {X1}
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Regression Example

b1≠ 0 

 X2 

Y 

 X3  X1 

 T1 

True Model 

 T2 

~∃S ⊆ {X2,X3},  X1 _||_  Y |  S

X1 _||_  Y |  {X2,X3}

X2 _||_  Y |  {X1,X3} b2≠ 0

b3≠ 0X3 _||_  Y |  {X1,X2}

DK

β2 = 0∃S ⊆ {X1,X3},  X2 _||_  Y |  {X1}

~∃S ⊆ {X1,X2},  X3 _||_  Y |  S DK
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Regression Example

 

 X2 

Y 

 X3  X1 

 T1 

True Model 

 T2 

X2

Y

X3X1

PAG
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Regression Bias

If 
• Xi is d-separated from Y conditional on  X/Xi

in the true graph after removing Xi → Y, and 
• X contains no descendant of Y, then:

bi is an unbiased estimate of βi

See Using Path Diagrams as a Structural Equation Modeling Tool, (1998). 
Spirtes, P., Richardson, T., Meek, C., Scheines, R., and Glymour, C., 
Sociological Methods & Research, Vol. 27, N. 2, 182-225 

http://www.hss.cmu.edu/philosophy/scheines/smr8.ps
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Ongoing Projects

• Finding Latent Variable Models (Ricardo Silva, Gatsby Neuroscience, former CALD PhD)

• Ambiguous Manipulations (Grant Reaber, Philosophy)

• Strong Faithfulness (Jiji Zhang, Philosophy)

• Educational Data Mining (Benjamin Shih, CALD)

• Sequential Experimentation (Active Discovery), (Frederick Eberhardt, CALD & Philosophy)
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